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Econometrica, Vol. 73, No. 3 (May, 2005), 837-901 

ASYMPTOTIC DISTRIBUTION THEORY FOR NONPARAMETRIC 
ENTROPY MEASURES OF SERIAL DEPENDENCE 

BY YONGMIAO HONG AND HALBERT WHITE1 

Entropy is a classical statistical concept with appealing properties. Establishing as- 
ymptotic distribution theory for smoothed nonparametric entropy measures of depen- 
dence has so far proved challenging. In this paper, we develop an asymptotic theory 
for a class of kernel-based smoothed nonparametric entropy measures of serial depen- 
dence in a time-series context. We use this theory to derive the limiting distribution of 
Granger and Lin's (1994) normalized entropy measure of serial dependence, which was 
previously not available in the literature. We also apply our theory to construct a new 
entropy-based test for serial dependence, providing an alternative to Robinson's (1991) 
approach. To obtain accurate inferences, we propose and justify a consistent smoothed 
bootstrap procedure. The naive bootstrap is not consistent for our test. Our test is use- 
ful in, for example, testing the random walk hypothesis, evaluating density forecasts, 
and identifying important lags of a time series. It is asymptotically locally more power- 
ful than Robinson's (1991) test, as is confirmed in our simulation. An application to the 
daily S&P 500 stock price index illustrates our approach. 

KEYWORDS: Density forecasts, entropy, invariance, jackknife kernel, nonlinear time 
series, random walk, serial dependence, smoothed bootstrap. 

1. INTRODUCTION 

MEASURING AND TESTING FOR SERIAL DEPENDENCE are central to time se- 
ries analysis (e.g., Granger and Terasvirta (1993), Robinson (1991), Tjostheim 
(1996)). A conventional measure of serial dependence is the autocorrelation 
function, which may overlook essential nonlinear features of time series that 
have zero autocorrelation. As Granger and Terasvirta (1993) pointed out, there 
are few simple suitable tools for analyzing nonlinear time series, although sig- 
nificant effort has been devoted to developing effective measures of and tests 
for serial dependence. 

Of increasing interest recently are smoothed nonparametric entropy mea- 
sures of and tests for serial dependence. These tools avoid restrictive para- 
metric assumptions on the probability distribution generating the data and 
can capture all pairwise dependencies in the lags of the series. Further, they 
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by National Science Foundation Grants SES-0117649, SES-0111238, and SBR-9811562. Any re- 
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838 Y. HONG AND H. WHITE 

have an appealing information-theoretic interpretation and are invariant un- 
der any continuous monotonic transformation of the data (Robinson (1991), 
Granger and Lin (1994), Skaug and Tjcstheim (1996)). Joe (1989a, 1989b) 
considered a smoothed nonparametric entropy measure of multivariate de- 
pendence of an independent and identically distributed (i.i.d.) random vector. 
Granger and Lin (1994) proposed a normalized smoothed nonparametric en- 
tropy measure of serial dependence to identify important lags in time series. 
Robinson (1991) developed a test for serial dependence using a modified en- 
tropy measure. Skaug and Tjcstheim (1993a, 1996) also considered a general 
class of smoothed density-based tests for serial dependence, which includes a 
test based on an entropy measure modified with a weight function. In a dif- 
ferent but related context, White (1982, p. 17) suggested a smoothed non- 
parametric entropy-based approach to testing parametric conditional density 
specifications. For more discussion on entropy and its applications in econo- 
metrics, see Maasoumi (1993) and Ullah (1993). 

As Granger and Lin (1994) pointed out, there is no asymptotic distribution 
theory available for smoothed nonparametric entropy measures of serial de- 
pendence. In fact, there is not even an asymptotic distribution theory for Joe's 
(1989a, 1989b) smoothed entropy measure of multivariate dependence in an 
i.i.d. context. Various smoothed nonparametric entropy estimators in an i.i.d. 
context have been considered in the literature (e.g., Ahmad and Lin (1976), 
Mokkadem (1989)). Consistency and in some cases convergence rates have 
been established, but asymptotic distributions for these entropy estimators 
are not available. This has hindered application of such otherwise appealing 
measures. 

In pioneering work, Robinson (1991) first provided an asymptotic dis- 
tribution theory for a smoothed nonparametric modified entropy measure 
of serial dependence, using a sample-splitting device. The great appeal of 
Robinson's approach is that it yields a limiting N(O, 1) distribution under the 
i.i.d. hypothesis and that sample splitting does not render the modified en- 
tropy estimator inconsistent for the population entropy. Indeed, Robinson 
(1991) established the consistency of his test against a wide class of station- 
ary ergodic processes. Nevertheless, Robinson's theory does not apply to 
smoothed nonparametric entropy estimators that do not use a sample-splitting 
device, such as the Granger-Lin normalized entropy measure. Further, the 
sample-splitting device involves some tuning parameters. As Robinson (1991) 
noted, the choice of these parameters remains open. Two practitioners us- 
ing different tuning parameters may reach conflicting conclusions in fi- 
nite samples. Another difficulty is that the sample-splitting device breaks 
down when the marginal distribution of the series is uniform. This case 
can arise, for example, in evaluating density forecasts, which are important 
for financial risk management, options pricing, and macroeconomic policy 
control (e.g., Diebold, Gunther, and Tay (1998)). Most importantly, as we 
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NONPARAMETRIC ENTROPY MEASURES 839 

show below, the sample-splitting device leads to suboptimal asymptotic local 

power. 
In this paper we provide an asymptotic theory for a class of kernel-based 

smoothed nonparametric entropy estimators of serial dependence. Our theory 
yields the limit distribution of the Granger-Lin normalized entropy measure, 
which was previously unknown in the literature. We also use our theory to con- 
struct a new test for serial dependence, providing an alternative to Robinson's 
(1991) test. To obtain accurate inferences in finite samples, we propose and 
justify a consistent smoothed bootstrap procedure for our test. Interestingly, 
the naive bootstrap procedure is not consistent for our test, in spite of the i.i.d. 
null hypothesis. Our test is useful in (e.g.) testing the random walk hypothe- 
sis, evaluating density forecasts, and identifying important lags of a time series. 
It does not involve sample splitting and thus does not require choosing tuning 
parameters. We show that our test is asymptotically locally more powerful than 
Robinson's test. This is confirmed by simulation. 

There are a number of other nonparametric measures of and tests for serial 
dependence in the literature. Besides smoothed density estimators, alternative 
tools are correlation integrals, empirical distribution functions, and empirical 
characteristic functions (Brock, Dechert, Scheinkman, and LeBaron (1996), 
Delgado (1996), Hong (1998, 1999), Pinkse (1998), Skaug and Tjostheim 
(1993b)). Smoothed density-based entropy estimators for serial dependence, 
however, have their own particular merits (Granger and Lin (1994), Skaug 
and Tjostheim (1993a, 1996)). In the context of density forecasts, for exam- 
ple, Diebold et al. (1998) showed that to assess whether a sequence of density 
forecasts is optimal, it suffices to check whether a series of probability integral 
transforms with respect to forecast densities is i.i.d. U[0O, 1]. Here, it is natural 
to use a smoothed density-based test, and our approach provides a suitable test 
for this joint hypothesis. 

In Section 2, we briefly review the concept of entropy and smoothed non- 
parametric entropy measures of serial dependence. In Section 3, we derive 
the limiting distribution for a class of kernel-based smoothed nonparametric 
entropy measures of serial dependence, which is then applied to derive the 
limiting distribution of the Granger-Lin normalized entropy measure. In Sec- 
tion 4, we use our theory to construct a new entropy-based test for serial de- 
pendence and to justify the consistency of a smoothed bootstrap procedure for 
our test. Asymptotic local power is studied in Section 5. In Section 6, we con- 
duct a simulation study comparing our test, Robinson's (1991) test, and Skaug 
and Tj stheim's (1996) test in finite samples. Section 7 presents an application 
to the S&P 500 stock index. GAUSS code for our test is available from the au- 
thors. All proofs are in the Appendixes. Throughout, all limits are taken as the 
sample size n -+ oo, and C e (0, oo) denotes a generic bounded constant. 
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840 Y. HONG AND H. WHITE 

2. ENTROPY MEASURES OF SERIAL DEPENDENCE 

Suppose {X,} is a strictly stationary time series with marginal density g(.) 
and pairwise joint density fj(-) for Zj, - (X,, X,_j)', 

where j E {N { 1, 2, ... I is 
a given lag order. An important issue in time-series analysis (particularly non- 
linear time-series analysis) is the measurement of serial dependence in {X,}. 
For continuous distributions, X, and X,_j are independent if and only if 
fj(.) = g(.)g(.) almost everywhere in the support of Zj,. Any deviation of fj(.) 
from g(.)g(.) is evidence of serial dependence. To measure deviations of fj(.) 
from g(-)g(-), one can use the Kullback-Leibler information criterion 

(2.1) Z(j) 
- In ff(xY) (x, y) dx dy,jcN 

g(x)g(y)fJ 
where the integral is taken over the support of Zj,. Although Z(j) is not a 
metric, it can characterize all pairwise serial dependencies because 1(j) > 0, 
and 1(j) = 0 if and only if X, and X,_j are independent.2 Moreover, it has 
an appealing information-theoretic interpretation, and it is invariant under 
any continuous monotonic transformation of {X,J. The invariance property 
of 1(j) is attractive because {X,J is i.i.d. if and only if any series of its con- 
tinuous monotonic transform is i.i.d. 

Granger and Lin (1994) examined the properties of a normalized version 
of 1(j), 

(2.2) y2(j) = 1 - exp[-21(j)], j e N, 

and interpreted it as a shadow autocorrelation of {X,J. They proposed estima- 
tors 

(2.3) 2(j) 1- exp[-21,(j)] (j= 1,..., 
n- 1), 

where 
I, (j) 

is a smoothed nonparametric entropy estimator based on the sam- 
ple X { Xt}n, 

w)(2.4) hdre k e e tigm( trX, )g),(j (nXd ) whee 

f, l(j 

where 
j.,(.) 

and 9(&) are kernel estimators for 
fj(') 

and g(.), and S,(j) 

2A similar measure that is a metric is the Hellinger distance, considered by Maasoumi and 
Racine (2002) and Maasoumi, Racine, and Granger (2004). Treatment of this measure is beyond 
the scope of our present analysis, although there are common elements, and our approach is 
applicable there. 
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NONPARAMETRIC ENTROPY MEASURES 841 

{t E N:j < t < n, fjt(Zj,) > 0, ^,(X,) > 0, t-,j(Xt-j) > 01. They examined the 
finite sample performance of ^2(j) in identifying important lags of a vari- 
ety of linear and nonlinear time-series models. As Granger and Lin (1994) 
pointed out, however, no limiting distribution theory is available for I (j) 
or - (j). This has hindered application of their measure. In fact, Robinson 

(1991) first observed and elegantly explained why no scaling of I-(j) has a 
known limiting distribution under the null hypothesis Ho that {X,} is i.i.d. In 

particular, no scaling of 
I2-(j) 

has a limiting null zero-mean normal distrib- 
ution. Zheng (2000), in an i.i.d. context, also observed the difficulty of ob- 

taining the limiting distribution of a White (1982, p. 17) entropy-based test 
statistic for parametric conditional density specification. To avoid this diffi- 

culty, Zheng used instead an alternative divergence measure which may be 
viewed as a modified first-order term of the Taylor series expansion of an 

entropy statistic. This measure, however, loses some appealing properties 
(e.g., invariance and the information-theoretic interpretation) of the entropy 
measure. 

A main stumbling block to the asymptotic distribution theory for I,,(j) is 
that under H0, ?i(j) -P> 0 at a rate n-1/2-e, where E, > c > 0 depends on the 

smoothing parameters used in f•,(-) and 9,(-). Consequently, the usual n1/2 nor- 
malization leads to a degenerate statistic because 

n1/2In,(j) 

- O. To overcome 
this difficulty, Robinson (1991) proposed a modified entropy estimator that, 
when j = 1, has the form 

(2.5) 
n,,,,(j) 

- (n - 
j)-1 Y C&(y) In(t(Zjt)1..., n - 1), 

tESnW,(j) 
g, 

where the weight function C,(y) = 1 +jy if t = 1, mod(j+ 1) and C,(y) = 1- y 
otherwise, with y E (0, 1). Although Robinson's (1991) estimator has a differ- 
ent form when j > 2, (2.5) nevertheless defines a useful entropy estimator. As 
Robinson (1991) pointed out, the use of C,(y) is essentially a form of sample 
splitting. It alters the convergence rate of I,,,(j) under Ho so that a n1/2 nor- 
malization yields a nondegenerate limiting normal distribution. Moreover, 

I,,,,(j) 
is still consistent for 

"(j) 
for any fixed j > 0 under stationary ergodicity. 

As noted above, however, this approach involves choosing the tuning parame- 
ter y. Further, the approach breaks down when X, has a uniform distribution 

under Ho because in this case one still has 
nl/2n, 

(j) A-, 0 under Ho. This can 
arise in (e.g.) evaluating density forecasts (Diebold et al. (1998)). Most impor- 
tantly, the test based on 

I,-,,(j) 
suffers from an asymptotic local power loss, as 

we show below. 
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842 Y. HONG AND H. WHITE 

3. ASYMPTOTIC DISTRIBUTION 

We now develop an asymptotic distribution theory for I, (j) of (2.4). 
We show that after an adjustment for its asymptotic mean, a proper scaling 
of I,(j), which differs from n1/2, has a limiting N(O, 1) distribution under Ho. 
Throughout, we impose the following condition on {X,}. 

ASSUMPTION A.1: Take {X,} to be strictly stationary with X, having support on 
II _ [0, 1]. Its marginal density g : I -- R+ exists, is bounded away from 0, and is 
continuously twice differentiable on I. Moreover, Ig(2)(x1) - g(2)2)1 CIX1 - x2 
for any xi, x2 E I. 

Throughout, we use the following convention to define derivatives at the end 
points of II: 

g(d-1) (0 + x) - g(d-1)(0) 
g(d() (0) lim (d = 1, 2), 

x-+o+ X 

(g(d-)(1 + X) - g(d-l(1) 
g(d)(1) - lim (d = 1,2). 

x-~0o- X 

Assumption A.1, as assumed in Robinson (1991) and Hall (1988), avoids the 
awkward problem of treating entropy in the tails. It allows us to focus on the 
essentials and still maintain a relatively straightforward treatment. Compact 
support may at first look restrictive, but it can always be ensured by a continu- 
ous strictly monotonic transformation such as the logistic function 

1 
(3.1) X, = exp(-Y 1 + exp(-Yt) 

where {Y,} is the original time series with unbounded support. No information 
is lost in (3.1) because {X,} is i.i.d. if and only if {Yt is i.i.d., and I(j) is invari- 
ant under any continuous monotonic transformation of the data. Moreover, 
as we show below, the asymptotic mean and variance of 

I,(j) 
in (2.4) are also 

distribution-free and thus are invariant under any continuous monotonic trans- 
formation. These features make the entropy measure attractive in practice. 

To see that one can often easily ensure that g(.) is bounded away from zero, 
let Y, have cumulative density function (CDF) G(-) with density g(.) and let 
F(.) be a prespecified CDF with density f(.). Then X, - F(Y,) has support 
on IT and the CDF of Xt is given by 

G(x) = P[F(Y,) < x] = G[F-'(x)], x e II. 

It follows straightforwardly that 

dG(x) g[F-'(x)] 
g (xF x E I. 

dx f[F-l(x)]' 
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To ensure minx,, g(x) > c, it suffices that 

f (y) < c-'g(y), ye R. 

Even though g(.) is typically unknown, we often know or are willing to assume 
enough about g(.), in particular its tail behavior, to specify a transforming 
CDF F(.) that satisfies f(.) < c-Ig(-), thereby ensuring g(.) > c. Moreover, 
it seems plausible that one could allow g(x) -* 0 at the end points with a suf- 
ficiently slow rate, and our theory would continue to hold under strengthened 
conditions on the bandwidth h = h, used in kernel density estimation. As the 
involved technicality would be quite complicated and would detract from our 
main goal, we do not pursue this here. However, we will use simulation to ex- 
amine the consequence of allowing g(x) -- 0 smoothly at the end points of I; 
this confirms our conjecture.3 

3.1. Boundary Effects and Jackknife Kernels 

We estimate probability densities via a standard (i.e., second-order) kernel: 

ASSUMPTION A.2: Assume k: [-1, 1] -* R+ is a symmetric bounded probabil- 
ity density function. 

An example of k(.) is the "quartic kernel," namely 

15 
(3.2) k(u) = -(1 - u2)21(IUI 1), 16 

where 1(.) is the indicator function. Assumption A.2 implies fS, k(u) du = 1, 
111 uk(u) du = 0, and f, u2k(u) du < oo. This and Assumption A.1 ensure 
that the biases of kernel density estimators are O(h2) in the interior re- 
gion (h, 1 - h) of support II. Because X, has bounded support, kernel density 
estimators are subject to boundary effects near the two ends of II. Such bound- 
ary effects arise because there is no symmetric coverage of the data for k(.) 
in the boundary regions [0, h] U [1 - h, 1]. Consequently, the kernel density 
estimators in the boundary regions are not asymptotically unbiased as h -+ 0. 
See Hirdle (1990, pp. 130-133) for more discussion. We find that although 
these boundary regions are of the size of h and thus are vanishing as n -, oo, 

3An alternative to avoid Assumption A.1 is to use a weight function with compact support. 
This allows for {X,} to have unbounded support and/or for g(.) to vanish, but because the infor- 
mation in the tails is lost, it does not deliver a consistent measure or test for serial dependence. 
Alternatively, one could consider a sequence of weight functions with increasing compact sup- 
ports as n - oc, as discussed by Robinson (1991). This delivers a consistent measure or test for 
serial dependence. However, the measure is expected to be sensitive in practice to the delicate 
choice of moving trimming. 
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844 Y. HONG AND H. WHITE 

for 
-, (j) 

of (2.4), the cumulative effect of the kernel density estimators in these 
vanishing regions can overwhelm the behavior of the kernel density estimators 
in the interior region (h, 1 - h) in terms of mean squared error (MSE). In par- 
ticular, the cumulative bias effect of the kernel density estimators in the bound- 
ary regions is Op(h) rather than the usual Op(h2). This slows the convergence 
of I (j) to Z(j) and complicates the analysis. To avoid this, we use k(.) only 
for the interior region (h, 1 - h); for the boundary regions [1, hi U [1 - h, 1], 
we use the jackknife kernel 

k(u) r k(u/a) 
(3.3) kb(u) (1 + r)( a) 

wk(0, b) a wk(O, b/a)' 

where ok(l, b) f b uIk(u) du for 1 = 0, 1, and r - r(b) and a =_ a(b) depend 
on b E If, an index whose value depends on where the density is estimated and 
which will be integrated out in computing our entropy estimator.4 We set 

Wk(1, b)/Ok(O, b) 
r -- 

ra)k(1, b/a)/wk(0, b/a) - wk(1, b)/wk(O, b) 

As suggested by Rice (1984), we choose a = 2 - b. Given b e I, the support 
of 

kb(.) 
is [-a, a], rather than [-1, 1]. Consequently, for any b E II, 

_kb(u) du = /kb(u) du= 1, 
f 

a bb 
-a -ab 

aukb(u) du = 
- b ukb(u) du = 0, 

-a U-ab 

Ukb() d > 0, 

f- a 

b 

-ab 
b 

By using kb(.), we ensure that the asymptotic bias of the kernel density esti- 
mators in the boundary regions will be of the same order as that in the inte- 
rior region. Thus, the cumulative effect of the kernel density estimators in the 
boundary regions [1, h] U [1 - h, 1] is at most the same order as that of the 
kernel density estimators in the interior region (h, 1 - h) in terms of MSE. 
We emphasize that the boundary effects are not particular to our kernel den- 
sity estimators. They arise whenever {X,} has bounded support, and they do 

4We note that the jackknife formula given by Hirdle (1990, pp. 131-132) has a typo. 
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NONPARAMETRIC ENTROPY MEASURES 845 

not depend on whether k(.) has bounded support. For example, the kernels 
used in Granger and Lin (1994), Robinson (1991), and Skaug and Tjestheim 
(1993a, 1996) also suffer from the boundary problem. 

Define the kernel-based "leave-one-out" marginal and bivariate density es- 
timators 

n 

(3.4) g,(X,) 

= 
(n - 1)-' EKh(X,, 

X,).(s 

t), 
S=-1 

(3.5) ft(Zjt) (nj - 1)-' K(2)(Zjt, Zjs,)I(s t), 
s=j+l1 

where (and throughout) 
nj - n- j, K2~)(Z,, 

Zjs) 
= Kh(X,, X,)Kh(X,_j, X,_K), 

and 

Jhlk(x/ 
h)(--), 

if x e [0, h], 

(3.6) Kh(x, y) 
h-'k('--), 

if x e (h, 1 - h), 

h-lk[(l-x)/h](x Y), if x E [1 - h, 1]. 

Note that Kh(x, y) , Kh(y, x) despite k(.) being symmetric. Although we al- 
low using different bandwidths for fjt,() and 

t,('), 
here we use the same band- 

width h. This makes the biases of J1,(.) and t,(.) cancel each other to a higher 
order under H0, leading to weaker conditions on h and faster convergence 
of In(j). In particular, the usual practice of undersmoothing is not needed to 
remove the biases, and the optimal bandwidth for ft(.) or 

9,(.) 
is allowed. 

We also do not require a higher-order kernel. Note that our theory applies 
to the leave-one-out estimators (3.4) and (3.5). If, following Granger and Lin 
(1994), leave-one-out estimators are not used, the asymptotic mean of I,(j) 
must be modified; see the discussion following Theorem 3.2. 

3.2. Heuristics on the Asymptotic Expansion of the Entropy Estimators 

To derive the limiting distribution of 
I,(j), 

we will Taylor-expand I-,(j) up 
to a second order and show that the first two terms jointly determine the limit 
distribution of 

?-, (j). 
The trick is to remove a nonzero mean from 

,n (j) 
and to 

exploit the consequences of the cancellation of the biases from fj,(.) and gt,(). 
Both f,(.) and 

g,(') 
affect the limiting distribution of 

I-(j), although they have 
different convergence rates. 

Given the well-known difficulty of obtaining the limiting distribution 
for ?,(j), we first provide some heuristics to gain insight into our approach. 
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846 Y. HONG AND H. WHITE 

We write 

(3.7) It, (J[ fnZ7)(j)fi(n?I + In ft(Z) 1 
tESQ IL g(X,)g(Xt ) fi(Z))L J 

- Ing( - In 'I I) g(Xt) g (Xt)] 
r n(fi, g o g) + I,I(f, f) - •lin(g, g) - 2jn(g, g), say. 

For the first term in (3.7), we have j,,(fj, g o g) = 0 a.s. under Ho. For the 
second term in (3.7), using the inequality I ln(1 + u) - u+ u21 < I u3 for ul < 1, 
we obtain 

(3.8) I,(f1, f1) = (Wj) + WI)2(j) + remainder 

under H0, where W1(j) n ' E + [fL(Zt) 
- 

fj(Zj,)]/fj(Zj,) 
and 

W22(j) 
ny' 

tj+l{[ft(Zgt) 

- 
f1(Zj)]/f(Zg,)}2. 

The term W1(j) is the first-order term 
of our Taylor series expansion. It can be approximated as 

(3.9) W(j) = HS^1,(j) + remainder, 

where 
H/, (j) 

is a second-order U-statistic arising from the interaction between 
the sampling variation of the estimator f>,(.) and the averaging operation over 
the sample in W,(j). 

The term W2(j) is the second-order term of the Taylor series expansion. It 
can be approximated by its integrated analog, 

(3.10) W2(j) = 
n-1 

f 
K(z) 

f (z) dz + remainder 

ft(Z) - f(z ()z)2 = n f E f (z) f(z) dz 
t= j+l 

+ 

n71 fif)-(z 
) 

tj+ 
f )(z) ?e(z) 

Ln 
E[zj f f(z) 

- f(z)]f d 

= L,(j) f H2n(j) + remainder, 
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where L,(j) is the integrated weighted MSE of 
f],('), 

and H2n(j) is a second 
term U-statistic. 

Collecting (3.8)-(3.10) together and putting H/(j)- Hl,(j) - H2n(j), we 
have 

(3.11) 2j1n 
(f., 

fj) = -L](j) + HH(j) + remainder. 

Both Hin(j) and H2n (j) are of the same order and jointly determine the lim- 

iting distribution of Ij,(f, f). Under 
Ho0, 

I,(j) = 
O,(ni h-') is dominated by 

L(j) = O(n71h-2 + h4). If nh4 -+ oc, nh8 -+ 0, then n' /2jn ,(f ) -) 0. When 
h oc n-1/6, ijn(fj fj) = 

Op(n-2/3) attains its best convergence rate. 
By similar (and simpler) reasoning, we can obtain 

(3.12) 24in (9, g) = -l,(]j) +? , (j) + remainder (i = 1, 2) 

under Ho, where 
l•(j) 

is the integrated weighted MSE of 
&,(.), 

and Vi,(j) 
and V2n(j) are second-order U-statistics. These are Op(n'7h-1/2) under Ho 
and are dominated by ln(j). If njh2 -? oc, njhs -- 0, then nl/2ij,,(g, g) --> 0. 
When h oc ni'1", then ij,,(g, g) = Op(n-4/5) attains its optimal convergence 
rate. This is faster than the optimal rate Op(ny2/3) of the bivariate entropy 
estimator Ij,(f;, fj). 

Now, from (3.7), (3.11), and (3.12), we obtain 

(3.13) 
22•(j) 

= -n'ldo + IHI(j) + remainder 

under Ho, where the nonstochastic factor do = (AO - 1)2 and 

(3.14) Ao= -(h-' - 2) k2(u) du + 2f k2(u) du db. 
01 -1 

Thanks to the use of the same bandwidth h, the bias-squared terms from ft,(.) 
and 9,(.) nicely cancel each other to a higher order within I (j). As a conse- 

quence, do depends only on the variance components of 
f.,(.) 

and g,(.), not 
on their biases. Undersmoothing is not needed to remove the biases, and the 

optimal bandwidth for fI,(.) or g,(.) is allowed. More importantly, the bias 
cancellation leads to a faster convergence rate for I,(j) than for 

iin(fj, fj), 
so 

that we can have 
,(j) 

- op(n-2/3). This occurs under and only under iH and 
a class of local alternatives. On the other hand, we note that a correction term 
appears in the variance component Ao, in (3.14), due to the use of the jackknife 
kernel kb(.) in the boundary regions [0, h] u [1 - h, 1]. This correction is not 
asymptotically negligible and it affects the asymptotic mean of 

I- (j). 
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3.3. Asymptotic Normality of the Entropy Estimators 

Although the nonstochastic factor n1dld dominates the U-statistic 
H/,(j) 

in 
order of magnitude, it affects only the asymptotic mean of I; (j). The limiting 
distribution of In (j), after centering, is determined by H,,(j). 

We now formally 
state the main result of this section. 

THEOREM 3.1: Suppose Assumptions A.1 and A.2 and Ho hold, nh4/ 
Inn -- oc, and nh7 -- 0. 

(a) Then 2hnjI,(j) + hdod -A> N(0, o2) for any lag order j = o(n), where 

02 - f2 2k 

(u)kl(u') 1 1 
12 - k(u +v)k(v) dv k(u' + v')k(v') dv' dudu'. 

J-1 J-1 

(b) Put I, - 
[2hn1",(1) 

+ hd?, ..., 2hnpI,(p) 
+ 

hd?]', 
where p ( N+ is fixed 

d 

but may be arbitrarily large. Then 1, -- N(O, or2I), where I, is a p x p identity 
matrix. 

Thus, by adjusting for the mean hd, and by scaling I, (j) by njh, which tends 
to oc faster than n'/2, we obtain a limiting normal distribution for in(j). Note 
that we allow but do not require the lag order j --+ oc as n -+ oc for 

I,,(j), 
and 

the condition on j is mild. Moreover, the condition on h is also not terribly 
restrictive. Both the optimal bandwidths (h cx ni-1/6 and n,'15, respectively) for 

f, (.) and g,(.) are allowed. Of course, these optimal bandwidths for the density 
estimators are not the same as the optimal bandwidth for the best convergence 
of the entropy estimator 1, (j). 

Theorem 3.1(b) shows that under Ho the finite-dimensional distribution of 

{2hnjil(j), j E N+} is asymptotically multivariate normal for any set of distinct 

lag orders and that 
cov[hnIZ,,(i), hn.,I(j)] - 0 whenever i 4 j. This provides 

a basis for constructing a portmanteau test for H0; see Section 4. 
A particularly appealing feature of 2hnj;$I(j) is that its asymptotic mean hd? 

and variance 
0T2 

are distribution-free and thus are invariant under any con- 
tinuous monotonic transformation. No estimation is required, because they 
are known given k(.) and h. This makes I,(j) rather attractive in practice. 
It greatly simplifies the calculation of confidence interval estimates. Moreover, 
to compute p-values for a smoothed bootstrap proposed in Section 4, one 
needs only to compare the unstandardized statistic n;-i (j) with its bootstrap 
counterpart n (j). Numerically identical bootstrap p-values will be obtained 
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as when one standardizes 
njn,(j) 

and 
njl*,(j), 

and the appealing asymptoti- 
cally pivotal character of our test is maintained. In contrast, other divergence 
measures, such as the squared L2-norm 

iL(j) -- n- 
[j•t(Zj,) 

- 
b,(X,)t_j(Xt_j)]2, t=j+l 

do not enjoy the invariance properties. The asymptotic mean and vari- 
ance of L2(j) are not distribution-free and must be estimated. Nevertheless, 

L2(j) does allow g(.) to vanish to 0 smoothly. We note that our approach is 

applicable to L2(j). 
To the best of our knowledge, Theorem 3.1 is the first asymptotic distribu- 

tion result for the smoothed entropy estimator I,(j). It can be used to obtain 
the limiting distribution of Granger and Lin's (1994) normalized entropy mea- 
sure '2(j) of (2.3), which, as a shadow autocorrelation, is useful in identifying 
important lags and patterns of serial dependence in {X,}. 

THEOREM 3.2: Suppose the conditions of Theorem 3.1 and Ho hold. (a) Then 

hnj/z(j) 
+ 

hd? 
-A N(0, r2) for any lag order j = o(n). (b) Put 

/2 
= [hnl x 

j2(1) + hd , ... , hnP/2(p) + hd%]', where p e N+ is fixed but may be arbitrarily 
large. Then 2d 

_ 
( N(0, o2Ip), where Ip is a p x p identity matrix. 

Various attempts have been made in the literature to develop appropriate 
general dependence measures in nonlinear time-series contexts, but few have 
been as simple and informative as the sample autocorrelation function. The- 
orem 3.2 shows that the sample shadow autocorrelation function ^2(j), after 
centering and scaling, is asymptotically N(0, 1) and is asymptotically indepen- 
dent across different lags. These properties are similar to those of the sample 
autocorrelation function. Thus, j/2(j) 

can play an important role in nonlinear 
time-series analysis analogous to that of the sample autocorrelation in linear 
time-series analysis. We note that the asymptotic mean and variance of ^2(j) 
under Ho are -n-'d ca nj h-2 and (njh)- '2. These rates differ from those 
obtained by Granger and Lin (1994) via simulation. Although the population 
measure y2(j) in (2.2) is nonnegative, ̂ 2 

?(j) 
may be negative under Ho. 

If, as in Granger and Lin (1994), leave-one-out kernel density estimators are 
not used, Theorems 3.1 and 3.2 still hold, except that the noncentrality factor do 
must be replaced with 

d = d - 2{[h-'k(0) - 112- 1, 

where the second term is contributed by the first-order term Wi (j) in (3.8). 
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4. HYPOTHESIS TESTING AND SMOOTHED BOOTSTRAP 

4.1. Testing the i.i.d. Hypothesis 
In an i.i.d. context, entropy has been used to test normality (Vasicek (1976)), 

uniform distribution (Dudewicz and van der Meulen (1981)), and goodness 
of fit (Gokhale (1983)). No limiting distributions are available for these tests, 
but they have been shown to have good power in simulations. Here, the ability 
of I(j) to capture all departures of fj(.) from g(.)g(.) makes it attractive for 
testing Ho. Robinson (1991) has proposed an asymptotic N(0, 1) test for Ho 
using 

I•,,(j) 
of (2.5). We now apply our theory to construct some alternative 

N(0, 1) tests for Ho using I, (j) of (2.4). 
We first consider a test for Ho that is based on an individual lag j: 

(4.1) ,(j) _ o--'[2hnj,~((j) + hdo], j << n. 

By Theorem 3.1, Tn(j) -4 N(0, 1) under Ho. We thus obtain an asymptotic 
N(0, 1) test for Ho using In(j). No sample splitting or tuning parameter is in- 
volved, and T?,(j) works even when X, is i.i.d. uniform. As we show in Section 5, 
this test is asymptotically locally more efficient than Robinson's (1991) test. 

Like Robinson's test, TE (j) is a large sample test, and its finite sample level 
may differ substantially from the asymptotic level. The quality of the asymp- 
totic approximation depends on the higher-order terms of the Taylor series ex- 

pansion for In(j) and the choice of the bandwidth h. Our analysis suggests that 
the asymptotic theory may not work well even for relatively large samples, be- 
cause the asymptotically negligible higher-order terms in 

i-,4(j) 
are close in or- 

der of magnitude to the dominant U-statistic HE(j) in (3.13), which determines 
the limiting distribution of T7(j). The same problem was also documented by 
Skaug and Tjostheim (1993a, 1996) for their tests. 

Fortunately, because {X,J is i.i.d. under H0, the bootstrap is well suited and 
provides a simple way to obtain reasonable critical values for Tn(j). For the ap- 
plication of the bootstrap in econometrics, see (e.g.) Horowitz (2001). Interest- 
ingly, the naive bootstrap (i.e., resampling, with replacement, from the original 
sample X 

= {X,}n1) does not deliver a consistent procedure for our test Tn(j), 
because it does not preserve the properties of the degenerate U-statistic H,(j) 
in (3.13). Instead, we propose the following smoothed bootstrap procedure: 
(i) Draw a bootstrap sample X* = {X,*7} from the smoothed kernel density 

(4.2) A(x) n-1 Kh(X , 
X), 

x E I, 

where k(.) and h are the same as those used in I2(j). (ii) Compute a bootstrap 
entropy statistic I,(j) in the same way as In(j), with X* replacing X. The 
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same k(.) and h are used in 
I,(j), I-(j), and A(.). (iii) Repeat steps (i) and 

(ii) B times to obtain B bootstrap test statistics 

{•Z,(j)}=B1. 
(iv) Compute the 

bootstrap p-value p* 
_ 

B-1' 
E• 1[i,*,(j) 

> 
j)]. To obtain accurate bootstrap p-values, B must be sufficiently large. Note 

that we need only to compare the entropy estimator -,(j) with its bootstrap 
counterpart -,I(j); 

there is no need to compute the asymptotic mean do and 
the asymptotic variance a2 here. The obtained bootstrap p-values are numeri- 
cally identical to those formed by comparing T,(j) with Tn*(j), and the asymp- 
totically pivotal character of our test is maintained. All these follow from the 
asymptotic distribution-free property of do and or2, and the use of the same 
bandwidth h in computing In(j) and I-(j). 

To show that the smoothed bootstrap procedure is consistent, we impose the 
following additional conditions on k(.). 

ASSUMPTION A.3: Suppose k: [-1, 1] -+ R+ is twice continuously differen- 
tiable on [-1, 1] with k(d)(-1) = k(d)(1) = 0 for d = 0, 1 and k(2)(ul) - 
k(l2(U2) 2 CIU1 - u2I for u1, U2 E r-1, 1]. 

THEOREM 4.1: Suppose Assumptions A.1-A.3 and Ho hold, nh5 = 0(1), 
nh7 1n3 n -+ 0, and j = o(n). Let T*(j) be defined as T,(j), with the bootstrap 
sample X* defined above replacing the original sample X and with the same 
k(.) and h used in Tn(j), Tn*(j), and g(.). Then 7 *(j) -4 N(0, 1) conditional 
on X. 

Theorem 4.1 shows that the smoothed bootstrap provides an asymptotically 
valid approximation to the limit N(0, 1) distribution of T,(j) under Ho. Note 
that Theorem 4.1 implies that T*(j) -~- N(0, 1) unconditionally. However, it 
does not indicate the degree of improvement of the smoothed bootstrap upon 
the first-order asymptotic approximation. As ,Tn(j) is asymptotically pivotal, 
it is plausible that the smoothed bootstrap can achieve reasonably accurate 
levels for Tn(j). We have suggested using the same kernel k(.) and the same 
bandwidth h in computing Tn(j), Tn*(j), 

and 9(.). This is not necessary, but it 
is expected to give a better finite sample approximation. We will examine the 
performance of the smoothed bootstrap in our simulation and we find that the 
smoothed bootstrap provides reasonable levels for our test in small samples. 

Next, we consider the asymptotic behavior of TI,(j) under a global alternative 
to Ho. 

ASSUMPTION A.4: Assume {X,} is a strictly stationary a-mixing process with 
mixing coefficient a(j) 

_ 
Cj-" for some v > 2. For each j e N+, the joint prob- 

ability density fi(.) of Z1, has support I12, is bounded away from 0, and is twice 
continuously differentiable on 12. 
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THEOREM 4.2: Suppose Assumptions A.1-A.4 hold, nh5 = 0(1), nh7 x 
In3 n - 0, and j = o(n). Then P[T,(j) > C,(j)] -+ 1 for any sequence of con- 
stants {C,(j) = o(njh)} and P[T, (j) > T,* (j)] -- 1, provided fj(.) g((.)g(.). 

Thus, the test based on T (j) is consistent against every alternative for which 

fj(.) = g(.)g(.), no matter whether an asymptotic or bootstrap critical value is 
used. Theorem 4.2 implies T?,(j) - +oc with probability approaching 1 under 
any alternative with fj(.) 

- 
g(.)g(.). Therefore, upper-tailed critical values are 

appropriate. The N(0, 1) critical value at the 5% level, for example, is 1.645. 
We emphasize that Robinson (1991) established consistency of his test for a 
fixed lag order j under a milder condition of stationary ergodicity, which al- 
lows for processes with longer memory. In contrast, we impose an a-mixing 
condition, which implies ergodicity and rules out long memory processes. The 
mixing condition is convenient for nonlinear time-series analysis. We use it 
here because we allow the lag order j -> oc as n --+ oc. 

The T (j) test is informative in revealing information about the lag(s) at 
which there exists significant serial dependence. However, for testing H0, it is 
possible that two different lag orders may give conflicting conclusions (see the 
empirical application in Section 7). It is thus desirable to have a portmanteau 
test that uses multiple lags. For this purpose, we consider 

1••(), pE+ (4.3) Q,(p)- - 

Tn• 

), peN 
j=p 

For simplicity, we consider a fixed lag truncation number p e N+. It is possible 
to allow p -+ oc as n -- oc with a different weighting for each lag j, but we do 
not consider this here. 

THEOREM 4.3: (i) Suppose the conditions of Theorem 4.1 and Ho hold. Let 
Q*( p) be defined as Qe (p), with the bootstrap sample X* replacing the original 
sample X but with the same k (-) and h used in Q,4(p), Q* (p), and g(.). Then for 
any fixed p E N+, Q (p) -d• N(0, 1) and Q*(p) --d N(0, 1) conditional on X. 
(ii) Suppose the conditions of Theorem 4.2 hold. Then P[Qn(p) > Cn] - 1 for 
any sequence of constants {C, = o(nh)} and P[Q,(p) > Q(p)] -l 1, provided 
fj(.) 0 g(.)g(.) for some j E {1, 2, ..., pI. 

Intuitively, because 
,,(j) 

-• N(0, 1) and cov[Tn(i), T,(j)] -+ 0 for i 0 j un- 
der Ho, {ln(j)}jP is a sequence of asymptotically i.i.d. N(0, 1) random vari- 

ables. Therefore, Qr(p) -4 N(0, 1) under Ho by the central limit theorem. 
Like many popular tests in time-series analysis, the power of Q,(p) depends 
on the choice of p. However, the dependence of the power of Q,(p) on p is 
expected to be less sensitive than the dependence of the power of Tn(j) on lag 
order j. One may view Q,,(p) as a portmanteau test for serial dependence that 
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can capture linear and nonlinear dependence in {XJ. Note that like the 7T,(j) 
test, we can simply compare 

=P• 
nj-, (j) with P=, njI, (j) in computing boot- 

strap p-values of Q,n(p). 
Alternatively, it is possible to construct an asymptotic X2 test statistic 

Kn(p) = 
p=1 Tn2(j). However, following the asymptotic local power analysis 

in Section 5, we find that this test is asymptotically less efficient than Qn(p), 
because K,(p) does not exploit the one-sided nature (i.e., Tn(j)* +oo) of 
individual test statistics T, (j) under the alternative to Ho. 

4.2. Testing for the i.i.d. U[0, 1] Hypothesis 
Diebold et al. (1998) recently proposed a graphical method to evaluate 

density forecasts, which is useful, for example, in financial risk manage- 
ment, options pricing, and macroeconomic policy control. They showed that 
if a series of one-step-ahead density forecasts correctly specifies the dynamic 
structure of the data generating process (though not necessarily correctly spec- 
ifying the conditional density), then the series of probability integral trans- 
forms with respect to forecast densities is i.i.d. Thus, T, (j) can be used to assess 
whether a sequence of density forecasts correctly specifies the dynamic struc- 
ture. Diebold et al. (1998) further showed that if a series of one-step-ahead 
density forecasts coincides with the conditional density generating the data, 
then the series of probability integral transforms with respect to forecast den- 
sities is i.i.d. U[O, 1]. In this case, the density forecasts are optimal in terms 
of minimizing any expected loss criterion. Thus, to assess whether a series of 
density forecasts coincides with the corresponding series of true conditional 
densities, one needs only to assess whether the series of probability integral 
transforms is i.i.d. U[0O, 1]. The Tn,(j) test is not suitable for this hypothesis, be- 
cause it does not incorporate the information about the U[0O, 1] distribution. 
However, our theory yields a suitable test for this joint hypothesis. When an 
individual lag j is used, we define the test statistic 

(4.4) T,7U() O= 

-[2h 
IlnL,(Zj,) + h[(A)2-]], 

teSn (j) 

where A0 is in (3.14) and S,(j) I {t N: j < t < n, fj,(Zjt) > 0}. Note that 
we need not estimate the marginal density g(.), which is known under the i.i.d. 
U[0, 1] hypothesis. Because of this, the centering constant in T, u(j) differs a bit 
from that for T, (j). When multiple lags are considered, we can define 

1 P 
(4.5) Q v(p) _ 

E 
(j), pe N. 

j=1 

We can also consider a bootstrap procedure for TU(j) and Qu(j). Here, 
we have to generate the bootstrap sample X* from the U[0, 1] distribution. 
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Neither the naive bootstrap nor the smoothed bootstrap in (4.2) will deliver 
a consistent procedure for T,U(p) and QO'(p). A much simpler procedure 
suffices; it is specified below. Like the T,(j) and Q,(p) tests, we can sim- 

ply compare Etes(j) In f~(Zjt) and 
=I--P t •S 

) ln fj,(Zj) with their bootstrap 
counterparts in computing the bootstrap p-values of 

T•,(j) 
and Q1 (j), respec- 

tively. 

THEOREM 4.4: Suppose Assumptions A.2 and A.4, and the hypothesis HE' that 

{Xt• 
- i.i.d. U[O, 1] hold and nh' = 0(1), h -+ 0. Let 

T,(j)* 
and Qu(p)* be de- 

fined as T?,(j) and Qf(p), respectively, with the bootstrap sample X* replacing 
the original sample X, where X* is an i.i.d. sample drawn from the U[O, 1] distrib- 
ution. The same k(.) and h are used in all test statistics. Then (i) for any lag order 

j = o(n), ,l (j) - N(0, 1) and TU, (j)* - N(0, 1) conditional on X; (ii) for 
anyfixed p E N+, Q•u(p) - N(0, 1) and Qu(p)* -- N(0, 1) conditional on X. 

Although we do not state a formal result, the test based on TU(j) can de- 
tect all pairwise dependence deviations from i.i.d. and all deviations from the 
U[O, 1] distribution. As pointed out by Diebold et al. (1998), there was no suit- 
able statistical test for Hu1 in the previous literature, which is important for 
evaluating whether density forecasts are optimal.5 Our 

T•u(j) 
and 

Qfn(p) 
are 

suitable tests for such a joint hypothesis. Note that there is no corresponding 
Robinson-type test for Hu1, because the sample-splitting device fails in this case. 

5. ASYMPTOTIC LOCAL POWER 

Robinson's (1991) test statistic and our test statistics are asymptotically 
N(0, 1) under 1H, and both are consistent against all j-dependent processes 
satisfying Assumption A.4. To examine their relative merits, we now study 
their asymptotic local power. As 

Tjcstheim (1996) pointed out, asymptotic lo- 
cal power analysis is rather difficult in nonparametric testing for serial depen- 
dence. For simplicity and tractability, we consider a class of locally j-dependent 
processes for which there exists serial dependence at lag j only, but j may grow 
to infinity as n --+ o. We thus suppose that the joint probability density of Zj, is 
given by 

(5.1) Hj,I(a,) : f1(z) = g(x)g(y)[1 + anqj(z) + r1,(z)], z 
= 

(x, y)' e 12, 

5In the time-series context, model-based density forecasts usually involve some model para- 
meter estimators based on in-sample observations. Because the forecast setup is substantially 
different from our present framework, here we follow the usual practice in the forecast litera- 
ture and do not consider the impact of parameter estimation uncertainty on our tests. However, 
we expect that parameter estimation uncertainty has no impact on the limiting distribution of 

TU•(j) 
and Qu (p), because model parameter estimators typically converge to the true parameter 

values at a parametric rate that is faster than our nonparametric density estimators. 
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where qj :I2 - R is a function characterizing deviations from H0, rj,(.) is a re- 
mainder term arising from the Taylor series expansion of fj(.) - fin(.), and the 
constant an -- 0 governs the rate at which the local alternative Hjn,(a,) con- 
verges to the null hypothesis Ho. 

ASSUMPTION A.5: (a) 1 + anqj(z) + rj,(z) > 0 for all z E V12, all n, j E N; 
(b) f12 qj(z)g(x)g(y) dz = 0 and f?2 rjn(z)g(x)g(y) dz = 0 for all n, j e N+; 
(c) g(.) and qj(.) are twice continuously differentiable on I and 112, respectively, 
g()(Xl) _- g()(x2)1 < C1xi - x21 for any x1, x2 E I and some C (0, 00); 
(d) f12 Iqj(z)i3g(x)g(y) dz < C and fI2 rin,(z)13g(x)g(y) dz = o(a2) uniformly 
in j E N+. 

Assumptions A.5(a) and (b) ensure that fM(.) is a valid bivariate probabil- 
ity density for all n, j e N+. Assumption A.5(d) ensures that the remainder 
term ri,(.) has no impact on the limiting distribution of our tests. Note that 
the marginal density 

g,(') 
of X, may depend on n under Hin(an) and may not 

coincide with g(.), the marginal density of X, under Ho. 
Two examples of Hin,(an) are an MA(1) process 

(5.2) Xt = 
ant- 

+ e,t 

and an ARCH(1)-type process 

(5.3) X, = e, 1 + ane_1, 

where {e,} is i.i.d. (0, o-,) with marginal density bounded away from 0. We have 
q,(z) = xy for (5.2) and q,(z) = (x2 - o2)(y2 - ,2) for (5.3). 

For brevity, we consider only TI(j). The conclusions for the local power 
of Q,(p) are similar. 

THEOREM 5.1: Suppose Assumptions A.2 and A.5 hold, nh4/lnn oo, 
nh7 -+ 0, and j = o(n). Then T (j) - 

taj 
- N(0, 1) under Hjn(n-1/2h-1/2), 

where j a 
o0-1 of2 q2(z)g(x)g(y) dz. 

Thus, T,(j) has nontrivial power against Hijn(n-1/2h-1/2) whenever qj(.) : 0. 
The rate a, = n-1/2h-1/2 is slower than the parametric rate n-1/2 as h -+ 0, 
but is faster than n-1/4, because nh3 -? oo. For example, when h oc nrt-1/6 (the 
optimal rate for ft(-)) is used, we have n-1/2h-1/2 (x n-5/12, which is slightly 
slower than n-1/2, but is faster than n-1/4. In fact, the admissible rates for an 
could be further improved toward the parametric rate n-'/2 by relaxing the 
conditions on bandwidth h, which could be achieved by using a higher-order 
kernel. The rate 

an 
could thus be made arbitrarily close to n-1/2, but it is always 

slower than n-1/2, due to smoothing. In practice we need to choose h to balance 
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the level and power in finite samples. We will use a data-driven method to 
choose h in our simulation and empirical application. 

Robinson (1991) proposed a test statistic that, when j = 1, has the form 

(5.4)2(j + )y2 

where 
•,,, 

(j) is the modified entropy estimator (2.5) and V - n-1 Esn C,() x 

In2 ~(Xt) - [n-' 
Et-s, Ct() In g,(X,)]2, S, {t 

- N: 1 < t < n, ~,(Xt) > 0}, and 

C,(8) is as in (2.5), with 8 E [0, 1).6 
Robinson (1991) required using different bandwidths h ,- h2 for fit(-) 

and g,(.) and a higher-order kernel k(.) for fjt,().7 Undersmoothing is needed 
to remove the effect of the bias terms of >f,(.) and 

gt,() 
on the limit distribution 

of R,(j). Given suitable conditions, Robinson (1991, Theorem 3.2) showed 

that R, (j) -~ N(0, 1) under Ho. In fact, our analysis in Section 3 suggests that 
when the same bandwidth h and the same kernel are used for fj,(.) and 

g,('), undersmoothing and higher-order kernels can be avoided in (5.4), thanks to 
the cancellation of the bias-squared terms of fjt,() and g,(.). 

Robinson (1991) did not examine the asymptotic local power of his test. 
Below, we show that the R,(j) test can only detect HIj(n-1/4). To see this, 
we note that R,(j) has nontrivial power if its limit noncentrality parameter 
under HIW,(a,) obeys 

(5.5) lim 
n11/2 : Ct (y)Eln[gn fin,(Zt) 

n-oc2(+)y2V t=j+l g(Xt)g,,(Xt) 
1 

c/ij lim (n1/2a) > 0, 
2 2(j + 1) y2V 

where V _ var[lng(X,)], and the equality follows from the inequality I In(1 + 
u) - u + I21 < u13 for lul < 1 and Assumption A.5(d). Note that (5.5) holds 
if and only if lim,,, nl•/2a = c > 0 or a,, cx n-'/4. Thus, Robinson's test can 
detect Hj, (n-1/4) only, which converges to H0 more slowly than Hj,,(n-1/2h-1/2). In other words, TI(j) is asymptotically locally more powerful than Robinson's 
(1991) test. We emphasize, however, that Robinson (1991) pointed out that 

6A factor of 2 is missing in Robinson's (1991) formula (2.21). We note that when multiple 
lags are considered, Robinson (1991) considered an alternative entropy test statistic that is based 
on the multivariate density estimator 

f(Xt, X,_1 ... X,_,). Our pairwise dependence test sta- 
tistic Q,(p) avoids the curse of dimensionality difficulty associated with f(X,, Xt,_1..., X,_,) 
when p is large. 

7For the marginal density estimator g,(.), Robinson (1991) used a second-order kernel m(.). 
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one should not expect tests using his weighting device to generally dominate 
all rival tests. 

Skaug and Tjostheim (1996) proposed a test for H0, using the functional 

(5.6) 
J(j) 

=S1n7-1/2 
[(Z) - 

(X,),_(X t=j+l 

where S2 is a consistent asymptotic variance estimator and w(.):112 
_ 

R+ is 
a weight function used to remove extreme observations at the tail.8 Under 
suitable conditions that allow {X,} to have unbounded support and g(.) to van- 
ish to 0 smoothly, Skaug and Tjostheim (1996) showed that 

,J(j) 
- N(0, 1) 

under Ho and suggested using upper-tailed critical values. As Skaug and 
Tjostheim (1996) pointed out, this test is not consistent against a global fixed 
alternative to H0, because 

ni-/2,(j) -- 
S-1 f[fj(z) - g(x)g(y)]w(z)fj(z) dz, 

which may be 0 or negative even if fj(.) -4 g(-)g(-), as nicely illustrated by an 
example in Skaug and Tjcstheim (1993a, p. 209). However, this test has been 
shown to beat Robinson's (1991) test and has excellent power in finite samples 
against a variety of alternatives (Skaug and Tjostheim (1993a, 1996)). It can be 
shown that it has nontrivial power against HjI(an) with suitable rate a, because 
its limit noncentrality parameter under Hinj(an) obeys 

lim 

n-1/2 
E•{[fjn(Zjt) 

- 
gn(X,)gn(X,_j)]w(Zt) } n-+o00 

t=1 

= f q(z)g2(x)g2(y)w(z) 
dz lim (n12an) 

J2 

2n-00 
+ f q(z)g2(x)g2(y)w(z) dz lim (nl/2a2) 

given Assumption A.5. Suppose f2 qj(z)g2(x)g22(y)w(z) dz > 0. Then 
the J(j) test has nontrivial power against Hin(n-1/2), thus dominating both 
the Tn(j) and R,(j) tests. If, however, fl2 qj(z)g2(x)g2(y)w(z) dz = 0, then 
it can detect Ijn(n-1/4), the same rate as Robinson's (1991) test R~(j). See 
a similar analysis in Skaug and Tjostheim (1996, p. 366) for this second case. 
Of course, the relative finite sample performance may tell a different story, as 
our simulation study and empirical application below demonstrate. 

8The weight function w(.) is generally not needed for the J,(j) test. When g(-) is uni- 
form, however, w(-) is needed to prevent degeneracy, because otherwise the asymptotic variance 
of J,n(j) would vanish to 0. 
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6. MONTE CARLO EVIDENCE 

We now compare the finite sample performance of tests based on ,(j), 
R,(j), and J(j) under the data generating processes (DGPs) 

DGP 0 I.I.D.: Xt = Et, 
DGP 1 AR(1): X, = 0.3X,_1 + o,, 
DGP 2 ARCH(1): X, = th/2, h = 1 + t-8X1 

hX, = eh/2 

ht = 0.25 + 0.6h,_l DGP 3 Threshold GARCH(1, 1): = 0.25 + 0.h 

+ 0.5X2ln1(Et < 0) 

+ 0.2X,2_L(et > 0), 
DGP 4 Bilinear AR(1): X, = 0.8Xt_e,_1 + t,, 
DGP 5 Nonlinear MA(1): X, = 0.8e~, + e,, 
DGP 6 Threshold AR(1): Xt = 0.5Xt,_ 

+ 
eP, 

if 
X,_1 

< 1, 

0.4XX,1 + e,, if X,_1 > 1, 
DGP 7 Fractional AR(1): X, = 0.81X,_10 + t,, 
DGP 8 Sign AR(1): X, = 

sign(Xtl) 
+ 0.43e,, 

where we consider two innovation processes: (i) {et} ~ i.i.d. N(0, 1) and 
(ii) {e,} I i.i.d. lognormal(0, 1), normalized to have zero mean and unit vari- 
ance. For all DGPs, the condition that the marginal density g(.) > c > 0 in As- 
sumption A.1 fails even after the logistic transformation in (3.1). This allows 
us to examine the consequence of such violations. DGP 0 allows us to exam- 
ine the level of the tests. DGPs 1-8 cover a variety of commonly used linear 
and nonlinear time-series processes in the literature. We consider two sample 
sizes: n = 100, 200. For each DGP, we first generate n + 100 observations and 
then discard the first 100 to mitigate the impact of initial values. A preliminary 
experiment shows that the asymptotic theory provides rather poor approxima- 
tion for the levels of all tests for sample sizes we consider. To ensure a fair 
comparison of all tests, throughout we use the smoothed bootstrap proposed 
in Section 4.9 

To compute Tn(j), R,(j), and 
,Jn(j), 

we first transform the data via the lo- 
gistic function in (3.1) and then rescale them so that the sample X 

,{Xt}, has support on fI. This induces dependence of each X, on the whole sample X, 
but this is a higher-order effect and is expected to be negligible asymptoti- 
cally. The entropy 1(j) is invariant under such scaling. We need to choose 

9Although not formally justified, the naive bootstrap procedure is expected to be applica- 
ble to the R,(j) and 7,(j) tests, because their distributions are not based on degenerate 
U-statistics. However, we use the smoothed bootstrap procedure for Tn(j), R,(j), and J,(j) 
for comparability. 
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tuning parameters (y, 8) for R,7(j), and a weighting function w(.) for Jn(j). 
We set (y, 8) = (0.5, 0) and choose the Beta(2, 2) density function for w(.) 
given that the transformed series has support fI. For all tests, we use the quar- 
tic kernel (3.2) and the same bandwidth h. We use the following data-driven 
method to choose h, which is more objective than an arbitrary choice or a sim- 

ple rule-of-thumb.1' By (3.12), an asymptotically optimal bandwidth that yields 
the optimal convergence rate for the Kullback-Leibler information criterion 
for g,(-) is 

(6.1) h l[f 
1k2(u)du 

Ifl u2k(u)du]2 

f01 

Fg'2'(X) 12 }-1/5 x ]1- g 
2(x) J g(x) dxj n-,15 

where k(.) is the kernel used to estimate g(.). For the quartic kernel (3.2), we 
have 

(6.2) ho = 2.0236 [ 
2 

g(x) dx n-1/5 

This optimal bandwidth is infeasible because it involves the unknown g(.) 
and g(2) (.). We therefore use a "plug-in" method to obtain a data-driven band- 
width 

(6.3) hQ = 2.0236 n-l 
t~ 

n 
2 (X)2 n-1J5 

teSn 

where (g, () and g (2) are preliminary estimators for g(.) and g(2)(.), 

S,= {t E N: 1 <I t < n:X E [ho, 1 - ho]} is the set of indices where X, falls 
within the interior region [ho, 1 - ho], and ho - ho(n) is the preliminary band- 
width used in gjt() and 2t I(-). The use of Sn avoids the boundary effect 
for g'(2.), which still exists despite the fact that the boundary effect of • ,(.) 
has been taken care of when the jackknife kernel kb(') is used. Different pre- 
liminary estimators g () and g' () are equivalent to different choices of a 

tuning parameter. If g n(.) and g (.2) are consistent for g(.) and g(2)(.), hQ 
will 

"Strictly speaking, our theory does not cover the use of a data-driven bandwidth (h say), as 
is the case for the bulk of smoothed nonparametric testing procedures for serial dependence. 
However, we expect that with additional conditions on the smoothness of k(.) and the conver- 

gence rate of h to a nonstochastic bandwidth h, we could extend our theory to cover the use of h. 
We leave this to further work. In this paper, we use simulation only to examine the performance 
of the tests using hQ in (6.3). 
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be consistent for h'. For convenience, we also use the quartic kernel (3.2) for 

•(-) 
and g(). To examine the sensitivity of all tests to the choice of the 

preliminary bandwidth ho, we set ho = Sxn-'I/(A) for A = 1, 2, 3, 4, 5, where 
Sx is the sample standard deviation of sample X. This covers a sufficiently 
wide range of rates for ho. These rates ensure consistency of gt,(.) and g (.) 
for g(.) and g(2)(.) if g(.) is fourth-order continuously differentiable on fI. For 
brevity, we report only the results for A = 5. 

To examine the bootstrap levels of the tests, we generate 1,000 realiza- 
tions of sample X under DGP 0 (for both normal and lognormal distribu- 
tions), using the GAUSS Windows version random number generator. We set 
B = 100, the number of bootstrap iterations for each simulation iteration. 
Tables I and II report the empirical rejection rates (in percentages) of T,(j), 
R,(j), and Jn(j) for j = 1,..., 10, as well as their portmanteau tests (the last 
two rows). The portmanteau test statistics are Q,(p) in (4.3), p-1/2 P=1 ( 
and 

p-1/2 
-j=1 

(j); we consider two lag truncation orders p = 5, 10. We first 
examine the individual tests T,(j), R,(j), and Jn(j). All three tests have rea- 
sonable levels at all three (10%, 5%, and 1%) significance levels, for all 10 lags, 
both sample sizes, and both normal and lognormal data. This indicates that 
the smoothed bootstrap procedure can effectively capture higher-order cor- 
rections to the first-order asymptotic approximation. Next, we examine the 

TABLE I 

BOOTSTRAP LEVELS OF TESTS UNDER I.I.D. N(0, 1) SAMPLE 

n = 100 n = 200 

Tn (j) -n (j ) WWn (W Tn W() Rn (j) Jn (j) 

j 10% 5% 1% 10% 5% 1% 10% 5% 1% 10% 5% 1% 10% 5% 1% 10% 5% 1% 

1 12.6 6.5 1.4 10.5 4.7 1.0 10.5 5.1 0.7 12.6 6.6 1.6 12.1 6.5 1.9 11.0 5.8 0.9 
2 11.7 6.4 0.8 11.2 6.7 1.2 10.4 5.5 1.0 12.4 5.9 0.7 10.8 5.3 0.7 10.7 5.7 1.3 
3 12.0 5.8 1.1 10.2 4.6 1.3 10.6 4.8 0.5 11.7 5.6 1.0 8.9 4.3 1.0 10.7 5.1 0.8 
4 12.2 6.8 1.1 10.0 4.6 0.8 9.8 4.6 0.7 10.8 5.9 1.4 9.8 4.6 0.9 9.5 4.3 1.4 
5 11.1 6.2 1.3 8.9 4.2 1.2 10.7 5.3 1.2 12.2 6.4 1.3 11.4 5.9 0.9 10.3 6.0 1.9 
6 12.2 5.6 2.0 9.8 5.0 0.9 9.0 4.8 1.1 12.0 5.9 0.8 11.7 5.4 1.3 11.1 6.1 1.3 
7 12.5 6.4 1.4 10.9 5.4 1.7 10.7 5.5 1.1 13.8 6.9 1.1 12.0 6.2 1.9 10.6 4.9 0.6 
8 10.5 5.7 0.8 9.8 4.6 0.6 8.9 3.6 0.8 11.0 5.5 1.0 11.2 5.5 0.6 10.6 5.2 0.7 
9 12.1 5.5 0.8 10.1 5.2 0.8 9.5 5.1 1.1 11.0 6.2 0.8 12.4 6.6 1.0 9.9 5.2 0.8 

10 11.2 5.4 1.6 10.8 5.5 0.8 10.8 5.2 1.0 10.9 6.2 0.8 10.2 5.0 1.0 10.4 4.8 1.0 

P 
5 13.6 6.0 1.1 11.2 4.9 1.1 10.7 5.2 0.7 12.9 6.1 0.7 12.3 7.0 1.7 11.5 6.0 1.5 

10 12.8 6.5 1.1 11.5 5.7 1.3 10.1 5.3 0.7 14.0 5.8 0.9 14.5 8.8 1.9 9.4 5.1 0.8 

Notes: (i) Data generating process, Xt - i.i.d. N(0, 1). 

(ii) Tn(j) denotes the new entropy test; 7Rn(j) denotes Robinson's (1991) test, and Jn(j) denotes Skaug and 
Tjostheim's (1996) test. 

(iii) 1,000 simulation iterations and 100 bootstrap iterations for each simulation iteration. 
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TABLE II 
BOOTSTRAP LEVELS OF TESTS UNDER LOGNORMAL SAMPLE 

n==100 n = 200 

Tn U) n (W) n (j) Tn (j) n (j) ,7n (j) 

j 10% 5% 1% 10% 5% 1% 10% 5% 1% 10% 5% 1% 10% 5% 1% 10% 5% 1% 

1 12.4 5.8 0.5 10.6 4.3 0.6 10.4 5.8 1.0 10.9 5.0 0.7 11.3 6.2 1.3 10.5 4.6 1.1 
2 9.8 4.7 0.3 10.1 4.4 0.7 9.6 4.4 1.1 10.7 6.3 1.7 11.1 5.6 1.1 10.7 5.3 1.0 
3 10.8 5.8 1.2 9.6 4.3 0.4 8.6 4.5 0.2 8.3 4.2 0.7 9.7 4.3 0.8 10.5 4.7 0.7 
4 11.3 6.0 1.2 10.0 4.9 1.4 8.9 4.3 0.6 12.2 5.8 1.0 10.7 5.8 1.0 8.8 3.9 0.8 
5 12.8 6.9 1.5 9.1 4.8 1.8 8.8 3.6 0.8 10.4 5.4 1.4 10.0 4.5 0.9 9.6 5.3 1.0 
6 13.0 7.1 1.7 8.4 4.3 0.9 10.0 4.7 1.2 9.9 5.1 0.7 10.2 4.0 0.9 10.9 5.9 1.3 
7 13.0 5.5 1.2 9.5 5.0 1.3 11.1 4.3 0.5 11.7 5.7 1.3 10.5 4.6 0.8 10.7 4.6 0.9 
8 11.7 6.0 1.5 10.5 5.3 0.8 9.1 4.2 0.8 10.8 5.3 0.7 8.4 4.2 0.9 10.0 4.9 1.1 
9 12.8 5.8 1.2 10.7 5.2 1.4 10.0 4.4 1.0 9.5 4.1 0.6 11.4 5.1 1.4 9.4 4.7 0.8 

10 12.9 6.9 1.1 10.0 5.0 1.3 8.6 3.4 0.5 9.3 4.1 0.4 10.4 4.5 1.1 8.5 4.9 0.7 

P 
5 10.3 3.8 0.5 9.4 4.8 0.8 10.9 4.7 0.5 9.5 3.9 0.8 10.9 6.7 1.1 10.0 4.3 0.5 

10 11.2 4.6 0.6 10.6 5.2 1.0 10.2 4.2 0.8 7.9 3.3 0.3 12.0 5.9 0.9 9.0 4.0 0.7 

Notes: (i) Data generating process, Xt - i.i.d. lognormal(0, 1), scaled to have zero mean and unit variance. 

(ii) Tn(j) denotes the new entropy test, R1n(j) denotes Robinson's (1991) test, and Jn(j) denotes Skaug and 

Tjostheim's (1996) test. 

(iii) 1,000 simulation iterations and 100 bootstrap iterations for each simulation iteration. 

portmanteau tests. In almost all cases, our Q,(p) test has reasonable levels 
at three levels and for both sample sizes, both lag truncation orders, and both 
normal and lognormal data. One exception is that it displays a bit of overre- 
jection at the 10% level under the normal random sample. The portmanteau 
test based on the Robinson-type statistics , (j) also performs reasonably well, 
except that it displays some overrejections at all three levels under the normal 
random sample with n = 200. Skaug and Tjostheim's (1996) portmanteau test 
has reasonable bootstrap levels at all three levels, for both sample sizes, both 
lag truncation orders, and both normal and lognormal data. 

Now we turn to examining the powers of the tests under DGPs 1-8. We 
generate 500 realizations of sample X under each DGP. Again, we consider 
n = 100, 200, and set B = 100. Since all eight alternatives are first-order linear 
and nonlinear time-series processes, we examine only tests based on the first 
lag order (j = 1), which delivers the best power for each test among the 10 lags 
in most cases. Tests based on higher orders have little or low power in most 
cases. 

Table III reports the empirical rejection rates of Tn(1), R, (1), and 7,(1) un- 
der DGPs 1-8 with i.i.d. N(0, 1) innovations, for both n = 100 and 200. When 
n = 100, T,(1) is as powerful as ,n(1) under DGPs 1, 6, and 8 at all three 
significance levels, and is more powerful than Rn(1) under DGPs 2, 3, 4, 5, 
and 7 at all three levels. When n = 200, T,(1) is, to various extents (from sub- 
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TABLE III 

POWERS OF TESTS UNDER I.I.D. N(0, 1) INNOVATION 

Si) 1% n (j) % 0 n (j) 

DGP 10% 5% 1% 10% 5% 1% 10% 5% 1% 

n = 100 
1 AR(1) 24.8 14.0 3.4 23.4 13.8 3.6 22.4 12.4 4.0 
2 ARCH(1) 50.0 37.6 17.8 41.4 26.4 11.4 74.2 61.2 28.0 
3 Threshold GARCH(1) 29.4 20.6 7.4 23.2 15.0 4.6 42.2 27.8 8.8 
4 Bilinear AR(1) 79.0 69.6 45.6 72.6 59.8 33.4 91.2 81.6 52.0 
5 Nonlinear MA(1) 50.6 34.0 14.0 45.2 31.8 12.8 51.0 34.8 12.0 
6 Threshold AR(1) 38.6 25.6 9.2 38.0 24.6 9.6 39.6 25.8 8.0 
7 Fractional AR(1) 25.6 17.0 5.0 22.8 14.2 4.8 21.4 13.4 3.8 
8 Sign AR(1) 64.4 60.8 56.2 64.0 60.2 54.2 60.8 55.8 48.8 
n = 200 
1 AR(1) 41.8 27.0 7.4 37.8 25.4 7.6 34.4 22.0 5.8 
2 ARCH(1) 75.2 67.6 41.0 64.8 52.2 25.2 95.6 90.0 68.0 
3 Threshold GARCH(1) 48.0 35.2 13.8 37.4 24.2 7.2 68.4 52.0 23.8 
4 Bilinear AR(1) 97.0 95.6 86.8 94.4 91.4 75.4 99.2 98.4 92.4 
5 Nonlinear MA(1) 85.4 74.0 49.8 76.6 65.2 37.2 83.0 72.8 43.2 
6 Threshold AR(1) 90.8 85.4 25.2 80.8 71.0 23.8 94.4 86.8 18.2 
7 Fractional AR(1) 37.8 26.2 10.0 34.6 22.2 8.4 38.2 23.8 7.4 
8 Sign AR(1) 85.8 84.6 82.6 85.6 84.0 81.2 81.8 79.8 74.8 

Notes: (i) DGP 1, Xt = 0.3Xt-1 + Et; DGP 2, Xt = eth/2 ht 
= 1 + 

0.8Xt21; 
DGP 3, Xt eth ht 

= 

0.25 + 0.5ht-1 + 0.5X211(St < 0)+ 0.2Xt•11(et 
> 0); DGP 4, Xt = 0.8Xt-_et-1 + et; DGP 5, Xt = 0.8e8_1 + et; 

DGP 6, Xt = -0.5Xt.-1(Xt-1 < 1) + 0.4Xt-~ 1(Xt-1 > 1) + et; DGP 7, Xt = 0.8IXt-_1 0.5 + t; DGP 8, Xt = 

sign(Xt-1) + 0.43et, where et - i.i.d. N(0, 1). 
(ii) T,(1) denotes the new entropy test, 7Zn(l) denotes Robinson's (1991) test, and J,(1) denotes Skaug and 

Tjostheim's (1996) test. 
(iii) 500 simulation iterations and 100 bootstrap iterations for each simulation iteration. 

stantially to slightly), more powerful than R,7(1) at the three levels under all 
eight DGPs, particularly at the 10% and 5% levels. On the other hand, when 
n = 100, T,(1) is as powerful as J,~(1) under DGPs 1, 5, and 6, and is slightly 
more powerful than J,(1) under DGPs 7 and 8. However, J,(1) is signifi- 
cantly more powerful than T,0(1) under DGPs 2, 3, and 4 at the three levels. 
When n = 200, 7,,(1) is more powerful than J,(1) under DGPs 1, 5, 7, and 8, 
and is less powerful than J,,(1) under DGPs 2, 3, and 4 at the three levels. 
Under DGP 6, J,,(1) slightly outperforms T,(1) at the 10% and 5% levels, but 
is dominated by T,,(1) at the 1% level. 

Table IV reports the empirical rejection rates of the tests under DGPs 1-8 
with i.i.d. lognormal innovations. For both n = 100, 200 and DGPs 1-7, T,7(1) 
outperforms 7Z,(1) at all three levels. Under DGP 8, T,(1) is slightly more 
powerful than 7Z,(1) at the 10% and 5% levels, but they are roughly equally 
powerful at the 1% level. On the other hand, there is a less clear ranking be- 
tween the powers of T,(1) and J, (1). When n = 100, T,,(1) outperforms J, (1) 
under DGPs 1 and 5, is equally powerful to J,(1) under DGPs 2, 3, and 8, 
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TABLE IV 

POWERS OF TESTS UNDER I.I.D. LOGNORMAL INNOVATIONS 

-n (1) 0n (j) 1 n ( ) 
DGP 10% 5% 1% 10% 5% 1% 10% 5% 1% 

n= 100 
1 AR(1) 71.8 60.8 32.2 41.6 30.4 10.6 70.6 52.4 21.6 
2 ARCH(1) 52.8 39.4 15.6 36.2 22.0 7.8 53.6 35.0 12.4 
3 Threshold GARCH(1) 31.0 21.0 7.0 19.6 10.8 4.0 33.0 18.0 4.2 
4 Bilinear AR(1) 89.8 79.4 52.4 62.0 46.4 18.6 95.0 90.8 74.2 
5 Nonlinear MA(1) 69.4 57.8 29.2 44.0 30.4 11.8 67.2 52.4 21.4 
6 Threshold AR(1) 90.8 85.4 66.0 80.8 71.0 44.0 94.4 86.8 55.4 
7 Fractional AR(1) 92.2 86.4 62.4 76.6 61.4 33.0 92.6 86.6 58.0 
8 Sign AR(1) 17.6 10.4 4.4 14.6 8.8 5.2 16.2 8.2 4.4 

n = 200 
1 AR(1) 96.8 92.8 75.8 82.2 69.8 37.8 97.2 90.8 69.0 
2 ARCH(1) 79.8 69.6 44.8 61.2 46.6 22.6 81.6 70.6 34.4 
3 Threshold GARCH(1) 47.6 34.4 15.6 34.0 22.4 7.2 46.6 32.2 11.4 
4 Bilinear AR(1) 98.8 98.0 92.6 89.4 82.0 57.6 98.6 98.0 93.8 
5 Nonlinear MA(1) 94.2 89.8 70.2 80.6 67.0 31.2 94.2 88.4 68.4 
6 Threshold AR(1) 99.8 99.4 97.0 98.6 97.8 88.8 100.0 99.8 97.6 
7 Fractional AR(1) 100.0 99.6 96.4 98.6 95.6 82.4 99.8 99.8 97.2 
8 Sign AR(1) 15.0 7.8 2.8 12.0 6.4 3.0 13.2 7.2 2.0 

Notes: (i) DGP 1, Xt = 
0.3Xt_1 

+ Et; DGP 2, Xt =t/2 ht = 1 + 0.8X ; DGP 3, Xt = eth1/2,ht = 

0.25 + 0.5ht-_ + 0.5X2 11(et < 0) 0.2X2 

t11(et 
> 0); DGP 4, Xt = 0.8Xt-1t-e1 + Et; DGP 5, Xt = 

0.8e21 + et; 
DGP 6, Xt = -0.5Xt-1(Xt-1 < 1) + 0.4Xt-11(Xtl > 1) + et; DGP 7, Xt = 0.8Xt-_110.5 + et; DGP 8, Xt = 

sign(Xt_1) + 0.43et, where et ~ i.i.d. lognormal(0, 1), standardized to have zero mean and unit variance. 

(ii) Tn(1) denotes the new entropy test, Rn(1) denotes Robinson's (1991) test, and Jn(1) denotes Skaug and 

Tjostheim's (1996) test. 

(iii) 500 simulation iterations and 100 bootstrap iterations for each simulation iteration. 

and is less powerful than J,0(1) under DGP 4. Under DGP 6, J,(1) slightly 
outperforms T,(1) at the 10% and 5% levels, but is dominated by T,(1) at the 
1% level. Under DGP 7, T,(1) is as powerful as J,(1) at the 10% and 5% lev- 
els, but it outperforms J,(1) at the 1% level. When n = 200, T,0(1) is roughly 
equally powerful to Jn(1) at the 10% and 5% levels under DGPs 4-8. Under 
DGPs 1-3, T?(1) is as powerful as Jn(1) at the 10% and 5% levels, and it 
outperforms J,(1) at the 1% level. Interestingly, all three tests have excellent 
power against DGP 8 (Sign AR(1)) with i.i.d. N(0, 1) innovations, but they all 
have little power when the innovations are lognormal. 

To sum up: (i) All three tests T,(j), R,7(j), and J,(j) and their portman- 
teau versions have reasonable bootstrap levels in small samples, for various lag 
orders and both normal and lognormal data. The smoothed bootstrap proce- 
dure can effectively capture higher-order corrections to the first-order asymp- 
totic approximation. (ii) The power of the 71,(1) test always is better than or 
equal to the power of the •n,(1) test for all eight DGPs (especially with i.i.d. 
lognormal innovations). This result corroborates our asymptotic analysis that 
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T,(1) is asymptotically locally more powerful than R,(1). (iii) There is a less 
clear ranking between the powers of T, (1) and &J,(1). The J,(1) test tends to 
outperform in most cases when the innovations are i.i.d. N(0, 1) and the sam- 
ple size is smaller. In contrast, 1,(1) tends to outperform 5J,(1) in more cases 
when the innovations are lognormal, or when the sample size is larger, or when 
the significance level is smaller. 

7. APPLICATION TO THE S&P 500 STOCK INDEX 

7.1. Testing the Random Walk Hypothesis 
We now use our tests to explore possible nonlinear serial dependence in 

the daily S&P 500 stock price index. It has long been hypothesized that stock 
prices follow a (geometric) random walk possibly with a drift. We are first inter- 
ested in testing this hypothesis and in identifying important lags. From DATAS- 
TREAM, we obtained data on the S&P 500 daily closing price index (P,) 
from January 1, 1992 to December 31, 2003, for a total of 3,136 observations. 
We define X, -1001n(P,/P,-1), transform it by the logistic function (3.1), 
and rescale it to have support on fI. Then we can test the random walk hy- 
pothesis by checking if {X,} is i.i.d. Panel A in Table V reports the boot- 

TABLE V 

BOOTSTRAP p-VALUES OF TESTS FOR DAILY S&P 500 STOCK RETURNS 

A: S&P 500 Daily Returns B: AR(3)-GARCH(1, 1) Residuals 

j ,(j) 7Zn(j) Jn(Wj) Cn(j) Tfl() 7Rn,(j) Jn(j) Cn(j) 

1 0.108 0.071 0.000 0.920 0.102 0.016 0.688 0.864 
2 0.000 0.018 0.000 0.069 0.029 0.155 0.241 0.011 
3 0.001 0.085 0.000 0.006 0.720 0.644 0.786 0.014 
4 0.000 0.293 0.000 0.584 0.227 0.094 0.007 0.245 
5 0.000 0.022 0.000 0.304 0.002 0.033 0.156 0.115 
6 0.000 0.302 0.000 0.185 0.923 0.740 0.486 0.157 
7 0.068 0.033 0.000 0.096 0.192 0.103 0.535 0.465 
8 0.001 0.587 0.000 0.925 0.625 0.424 0.985 0.668 
9 0.003 0.110 0.000 0.828 0.323 0.016 0.077 0.798 

10 0.012 0.645 0.000 0.040 0.197 0.586 0.023 0.226 

P 
5 0.000 0.005 0.000 0.029 0.020 0.021 0.074 0.083 

10 0.000 0.004 0.000 0.018 0.109 0.023 0.066 0.223 

Notes: (i) The sample period for the S&P 500 daily price index is from January 1, 1992 to December 31, 2003, with 
a total of 3,151 observations. 

(ii) Tn(j) denotes the new entropy test, n•(j) denotes Robinson's (1991) modified entropy test, Jn(j) denotes 
Skaug and Tjestheim's (1996) test, and Cn (j) denotes the autocorrelation test. The last two rows are the corresponding 
portmanteau tests, with truncation lag orders p = 5, 10, respectively. 

(iii) Panel A shows the bootstrap p-values for observed raw S&P 500 daily price changes, using the smoothed boot- 
strap procedure proposed in Section 4. Panel B is the bootstrap p-values for estimated standardized residuals from 
the AR(3)-GARCH(1, 1) model in (7.1), using the smoothed bootstrap procedure described in Section 7. B = 1,000 
bootstrap iterations are used in computing the bootstrap p-values. 
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strap p-values of Tn(j), R,(j), and J,(j) for lag orders j from 1 to 10, and 
their corresponding portmanteau tests for truncation lag orders p = 5, 10. The 
bootstrap p-values, based on B = 1,000 bootstrap iterations, are computed as 
described in Section 4. For all three tests, we use the quartic kernel in (3.2) and 
the plug-in bandwidth in (6.3), with the preliminary bandwidth ho = Sxn-1/6 
where Sx is the sample standard deviation of X -- {X,}). We set (y, 8) = 
(0.5, 0) for R,(j) and use a Beta(2, 2) density function for w(-) in 

,7J(j). We also report the autocorrelation statistic Cn(j) - nJ/2i,(j) and the Box- 
Pierce portmanteau statistic BP(p) 

•P,• 
C2(j), where ^3n(j) is the sample 

d d 
autocorrelation function of X. Under Ho, C,(j) A N(0, 1) and BP(p) - 

Xp 

. 

Unlike T,(j), R,(j), and J,(j), however, two-sided bootstrap critical values 
should be used for Cn(j). 

We first examine the portmanteau tests. Both our portmanteau test and 
Skaug and Tjestheim's (1996) portmanteau test have a zero p-value for both 
p = 5 and 10, and the portmanteau test based on Robinson's (1991) statistics 
has p-values of 0.5% and 0.4% for p = 5 and 10, respectively. Moreover, the 
Box-Pierce portmanteau test has p-values of 2.9% and 1.8% for p = 5 and 10, 
respectively. All these results indicate that the S&P 500 daily stock price index 
does not follow a random walk, and nonparametric density-based tests give 
much stronger evidence than the Box-Pierce test. Next, we use individual tests 
to examine possible lag structure of serial dependence in {Xt}. The J,(j) test 
has a zero p-value for all 10 lags. The T7(j) test has p-values ranging from 0 
to 1.2% for all lags except lags 1 and 7. At lags 1 and 7, T,(j) is insignificant 
at the 5% level. The Rn(j) test has p-values less than or equal to 3.3% only at 
lags 2, 5, and 7. For all other lags, Rn,(j) is insignificant at the 5% level. The 
C,(j) test has p-values of 0.6% and 4% at lags 3 and 10, respectively, and is 
insignificant at the 5% level for all other eight lags. The results of C, (j) suggest 
that there might exist mild low-order autocorrelation in {X,}. 

7.2. Testing the i.i.d. Hypothesis for Standardized Model Residuals 

It is well known that there exists strong volatility clustering in stock re- 
turns; this, together with significant autocorrelation at lag 3, may well have 
contributed to our rejection of the random walk hypothesis. To check whether 
the rejection is due to GARCH effects and low-order autocorrelation in {X,}, 
we fit an AR(3)-GARCH(1, 1) model to {X,} by the quasi-maximum likeli- 
hood estimation (QMLE) method using a Gaussian likelihood. The estimated 
AR(3)-GARCH(1, 1) parameters are indeed highly significant: 

(7.1) X, = 0.0549 + 0.0075X,_1 - 0.0060Xt_2 
- 

0.0309Xt_3 + ?thl~/2 
(0.0137) (0.0189) (0.0186) (0.0187) 
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h, = 0.0045 + 0.05892_ 1ht_1 + 0.9387ht_1, 
(0.0015) (0.0081) (0.0080) 

n = 3135, mean log-likelihood = -1.31516, 

where the numbers inside the parentheses are robust QMLE standard errors. 
We now apply the tests to the standardized residuals I{&,^ . We emphasize that 
like Robinson (1991) and Skaug and Tjestheim (1996), our theory is based on 
observed raw data X rather than the estimated residuals {&,}17,- but it is plau- 
sible that parameter estimation uncertainty has no impact asymptotically, as 
the convergence rate of parameter estimators is n-1/2 (e.g., Lee and Hansen 
(1994)), more rapid than that for our ft,(-) and gt(.). Moreover, the smoothed 
bootstrap procedure described below is expected to take into account the im- 
pact of parameter estimation uncertainty in finite samples. 

The smoothed bootstrap is implemented here as follows: (i) Transform 

{&}t=, 
via the logistic function in (3.1) and scale it to have unit support 

on II. Denote the transformed standardized residual sample as {e,t)t1. Then 
use 

{e,}•n1 
to obtain the smoothed density estimator ̂ ,(e) = n- nIKh(e - e,) 

for the standardized residuals, where h is based on the "plug-in" method 
in (6.3). (ii) Draw a bootstrap sample {e}71n, from the smoothed density esti- 
mator ^e(-). Transform 

{e}>•1 
via the inverse logistic function transformation, 

normalized to have zero mean and unit variance, and denote the transformed 
sample as {ef }Un. (iii) Construct a bootstrap sample 

{X~,*_1 
using {E}"), and 

the estimated parameters in (7.1). (iv) Estimate an AR(3)-GARCH(1, 1) 
model for 

{X,:*l7 
via QMLE and save the resulting estimated standardized 

residuals 
{I^}•)I. (v) Transform {18*J7, via (3.1) and scale it to have unit support 

on IL. Then compute a bootstrap statistic, say I-(j), using 
{t}"_1 

. (vi) Repeat 
Steps (ii)-(v) B times, and thus obtain B bootstrap test statistics 

({,*(j)}i. 
(vii) The bootstrap p-value is p* = B- 11_=, 1[-,1(j) 

> In(j)], where 
2,4(j) 

is 
the entropy estimator based on 

{&t}>_,. 
We use B= 1,000. 

Panel B in Table V reports the bootstrap p-values of T, (j), R,(j), J(j), and C,(j) for j = 1, ..., 10, as well as their portmanteau tests. We first ex- 
amine the portmanteau tests. Our portmanteau test Q,2(p) has p-values of 
2.0% and 10.9% for p = 5 and 10, respectively, giving some evidence of serial 
dependence in {8,}. From the individual Tl(j) tests, we see that the rejec- 
tion of Q,(5) mainly comes from serial dependence at lags 2 and 5. Next, the 
portmanteau test based on Robinson's (1991) statistics has p-values of 2.1% 
and 2.3% for p = 5 and 10, respectively, giving significant evidence of serial 
dependence in {&,} at the 5% level for both p = 5 and 10. The individual Rn(j) 
statistic is significant at the 5% level for lags 1, 5, and 9. On the other hand, 
Skaug and Tjestheim's (1996) portmanteau test has p-values of 7.4% and 6.6% 
for p = 5 and 10, although J,(j) is significant at the 5% level for lag 4, and the 
Box-Pierce test has p-values of 8.3% and 22.3% for p = 5 and 10, respectively, 
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indicating no serial dependence in 
{,/}. 

The individual C,(j) test, however, is 
significant at the 5% level for lags 2 and 3. Overall, Robinson's (1991) tests and 
our tests suggest that the AR(3)-GARCH(1, 1) model cannot fully capture the 
dynamics of the S&P 500 daily returns. This seems to be consistent with the 
empirical findings of Hansen (1994) and Jondeau and Rockinger (2003) that 
higher-order conditional moments (e.g., skewness and kurtosis) of financial 
time series are time-varying. Of course, this may also be due to misspecifica- 
tion of the conditional mean and conditional variance. It would be interesting 
to explore the extent to which the remaining serial dependence can be used to 
forecast the distribution of the S&P 500 daily returns, which could be useful 
for improving (e.g.) financial risk management, hedging, and derivatives pric- 
ing. This requires estimation and out-of-sample forecast evaluation of suitable 
nonlinear time-series models. We leave this to subsequent research. 

8. CONCLUSION 

We have provided asymptotic theory for a class of kernel-based smoothed 
nonparametric entropy estimators of serial dependence. We used our theory 
to derive the limiting distribution of Granger and Lin's (1994) normalized en- 
tropy measure of serial dependence, which was previously not available in the 
literature. We also constructed a new entropy-based test for serial dependence, 
providing an alternative to Robinson's (1991) test. To obtain accurate infer- 
ences in finite samples, we proposed and justified a consistent smoothed boot- 
strap procedure. The naive bootstrap is not consistent for our test. Our test is 
useful in, for example, testing the random walk hypothesis, evaluating density 
forecasts, and identifying important lags of a time series. It is asymptotically 
locally more powerful than Robinson's (1991) test, as is confirmed in a simula- 
tion study. An empirical application to the daily S&P 500 index illustrates our 

approach, revealing potential opportunities for improving the modeling of the 
S&P 500 dynamics. 
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APPENDIX A: PROOFS OF THEOREMS 

PROOF OF THEOREM 3.1: (a) To show Theorem 3.1(a), we first state Theo- 
rems A.1 and A.2. 
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THEOREM A.1: Suppose Assumptions A.1 and A.2 hold, nh4/lnn - co, 
nh7 --+ 0, and j = o(n). For zl, Z2 2,put K~2) (Z1, Z2) K2)(z1, z2)- 

f?2 

Kh2)(z, 

Z2) dz, where K 2) (, 
.) 

is given in (3.5). Define 

Aj, (ZI, z2) K2) Z2)- 
K2)(ZI )fj(z) dz /f(z), 

Aj,(z, 
, 

zzZ2) 
K(zz2) - 

(2)(Zl, j(z) fi()dz]/f(zi), 

Ajn(z22) 
[ 1)ffZIK 

2 
ff d 

Bj,(zi) f K , Z)f(z) dz - fj(z) / (z), 

Hljn(Zl, z2) - An(Zl, Z2) + Ajn(z2, Z1), 

H2jn(Zl , 
Z2) 

- 
Ajn(z, zl)Aj,(z, z2)fj(z) 

dz. 

Then under Ho, 

21jn(f, fi)= -L,(j) + 
Ht(]) 

+ 
2[/nB(j) 

- (in(j)] + op(nilh-'), 

where L,,(j) n:- EA (Z3, Z1) + 
EBn(Zi), 

Z3 (X3, X2)', Z1 (X1, Xo)', 

Hn,(j) 
Hin (j) - 

H2n(j), 

-1 
n t-1 

Hn(j) = H,, (Zjt, Zj), 
t=j+2 s=j+1 

H2n (j) = j2 H2jn(Zjt, ZJs), 
t=j+2 s=j+ 1 

n,(j) 
= 

n-p 
L 

Bz,(Zjt), 
and 

t=j+l 

Cn (j) = n-' A 
,(z, 

Zj,)Bj,(z)f,(z)dz. 
t =j+lf2 

By construction, we have f?2 Hijn(zI, z)fj(z) dz = 
f2 Hijn(z, z2)fj(z) dz = 0 

for all zl, 2 E I2, i = 1, 2. Note that H2jn(., .) is defined in terms of A,(,.) 
rather than A(, (,.). 

THEOREM A.2: Suppose Assumptions A.1 and A.2 hold, nh/linn --+ o, 
nh7 -+ 0, and j = o(n). For 

xl, 
X2 E I, put Kh(Xl,X2) Kh(XlX2) - 
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fo Kh(X, x2) dx, where Kh(., .) is given in (3.6). Define 

an(x1, x2) [Kh(X1, X2) - 
1Kh(X1, x)g(x) dx 

/g(xl), 

~,(X1, x2) [ Kh(X1, X2) - Kh(X, x)g(x) dx /g(xl), 

b,(xl) = Kh(Xl, x)g(x) dx 
- 

g(xl) /g(xl), 

v)ln(Xl, X2) an(xl, X2) + an(X2, X1), 

2n(X1, x2) an(x, xl)a(x, x2)g(x) dx. 

Then under Ho, 

ijn(, g) = -In(j) + Vn(j) + 
2[bin(j) 

- 
,in(j)] 

+ op(n lh-1/2) 

(i= 1,2), 

where I(j)r n1Ea 2(X2, X1) 
+EbZ 

(X1), 

n 
t-i 

wt= 
j+2 s=j+1 

\-1 t-i 2(J) 1n [Vln(Xt1, 
Xs) 

- v2n(Xt , X )], 
t=j+2s=j+l 

bin(j) = 
nI'Ej+ bn(X,), 2(j) n 

t=j+ b,(Xtj), ln(j) 
= 

nY1 x 

>~t•l fo an(X, Xt)bn(x)g(x) 
dx, and 2n(j) = nyi ~ j+ an(X, X,_)b,(x) x 

g(x) dx. 

The proofs of Theorems A.1 and A.2 are deferred to the end of this 
proof. We first use these theorems to show Theorem 3.1(a). By Theorems 
A.1 and A.2, (3.7), Ij,(fj, g o g) = 0 a.s., and h -- 0, we have 

(Al) 21~(j) = 
-nj1 

[EAn(Z3, 
Z1) 

- 

2Ean(X2, 
X1)] 

- [EB2 
(Zx) 

- 2Eb 2(Xl)] 

+ {Hn(j) - [r(j) + 2n(j)]} + 2[L(j) -b(j)-b2n 

- 2LC(j) - n(I) - 
2n(j)] + op(n h-'). 
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It follows that 2nj) = -n1 do + 
HI(jI) 

+ 
op(n'jh-) 

by Lemmas A.1-A.4 

and VJ,(j) + 2n (j) = Op(n' h-1/2) under Ho by Chebyshev's inequality. The 
desired asymptotic normality then follows because hnjHI(j) -4 N(0, Ao2) un- 
der Ho. The proof of the latter is omitted here because it is a special case of 
Theorems A.6-A.9, which show hnjHn(j) -4 N(0, o-2) under a class of local 
alternatives. 

We now state Lemmas A.1-A.4 under the conditions of Theorem 3.1. The 
proofs of these lemmas are given in Appendix B. 

LEMMA A.1: Under Ho, EA% n(Z3, Z1) - 2Ea2(X2, X1) = do + 0(1), where 

Z3 = (X3, X2)', Z1 
= 

(X1, Xo)', and do is as in (3.14). 

LEMMA A.2: Under Ho, EB 2 (Zi) - 2Eb 2(X1) - 2[Eb,(X1)]2 + O(h6). 

LEMMA A.3: Under Ho, Bn(j) - b ,(j) -/b2n(j) 
= [Ebn(X1)]2 + Op(nt1/2h4). 

LEMMA A.4: Under Ho, Cn(j) - ^1n(j) - ^2n(j) = Op(n1/2h4). 

(b) Next, we show Theorem 3.1(b) by the Cramer-Wold device. Let A E RP 
be an arbitrary nonzero vector such that A'A = 1, where p e N is fixed. 
Define MA- = 

E•P, Aj[2hnj1I(j) + hdo] and bA=, = , Ajhnj~H(j). Then we 

have MAf = (A + op(1) given that 
2n,(j) 

+ 
nj+l -= H(j) + op(n-'h-) 

and maxi<j<p IAjl < 1. Using reasoning analogous to Theorems A.6-A.9, we 

have NA -4d N(0, o2) under IHo for any arbitrary A with A'A = 1. Here, 
avar(NA) -> a-2 for all A 

-: 
0 such that A'A = 1, because avar[hnjH,(j)] -+ a-2 

for all j = o(n) and 
cov[hniH,(i), hnjHn(j)] -+ 0 for i 0 j, and i, j = o(n). 

The latter can be shown in the same way as the former in the proof of The- 
orem A.8. It follows that MA - d N(O, oa2) for any A with A'A = 1 and thus 

In -~ N(O, o-21) by the Cramer-Wold device. This completes the proof of 
Theorem 3.1(b). 

The proof of Theorem 3.1 will be completed provided Theorems A.1 and A.2 
are proven, which we turn to next. 

PROOF OF THEOREM A.1: We show Theorem A.1 using Lemmas A.5-A.10, 
which are proved in Appendix B. First, by the inequality that I ln(1 + u) - u + 
1u21 < u13 for lul < 1, we obtain the following lemma. 

LEMMA A.5: Suppose Assumptions A.1 and A.2 hold, nh4/ ln n - oO, h -+ 0, 
and j = o(n). Then I1n(f1, f1) - J( 1) 

? 
2(j) = O(n= 3/2h-3 In nn + h6) un- 

der Ho, where W1(j) and W122(j) are as in (3.8). 
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We now consider the first-order term WI(j). Put 
fj(z)- 

f12 K2 h(z , z2) x 
fj(z2)dz2 and Yjn(Z, Z2) = f2[K 2)(Z, Z2) - f?2 K 2) 

(z, z')fj(z') dz']dz/fj(zl). 
Then we can write 

(A2) W -j 1 it(Z(t) 
- f3 (Zt) f-(Zt) - 

fJ(Zt) t= j+1 fi (Zl) fi (Zt) J 
-1 n t-1 

2 L [Ain(Zt,, 
Zjs) + 

Ajn(Zjs, Zt,)I t=j+2 s=j+l 

1 

j 
1 n t-1 

+ 2 
2 [TZY(Zt,, 

Zs) + yn(Zis, ZZ)] 
t=j+2 s=j+l 

n 

+ 
n-17 

Bin(Z 
t) t=j+l 

1 11 
-Hin(1) + -)Fn(j) +lBn(j). 2 2 

LEMMA A.6: Suppose Assumptions A.1 and A.2 hold, h -+ 0, and j = o(n). 
Then with probability one, Fn (j) = 0 for all n sufficiently large under Ho. 

We now consider the second-order term 1W2(j) in Lemma A.5. We write 

- 
f t(Zit) - fL(Zit) 2 - fJ(ZJt) 

- fi(Zit) 1 
(A3) 

W2(j) 
__ 

. 
1 Y, 

ZnillE 
t=j+l t= j+l 

+ 2n1 f•t(Zt) 
- fi(Zt) Ifi(Zt) 

- 
fj;(ZIt) 

t=j+l fi (Zit) f (Zit) 

- 21 (j) + 22(j) + 223(j), say. 
We now consider each of the terms in (A3). For the first term W21 (j) in (A3), 
we can write 

1 1 
(A4) W21(j)= n-1D (j) + nj+2n1IH2n(j), 

where ),(j) (.)1 
tn= j+2 

t- Z), 

( 

- 

n-l 

t? 
- 
s-lr 

t= j+3 s= j+2 
r=j+l 
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872 Y. HONG AND H. WHITE 

and Djn(zi, z2) - AZ(z1, z2) + A,(z2, z1), 

H2jn1(Z1 z2, Z3) 
-- 

Ajn(z1, Z2)Ajn(Z1, Z3 

+ Ajn(z2, Z3)Ajn(Z2 Z1) + Ajn(Z3, z1)Ajn(z3, Z2). 

Using Lemma B.1 in Appendix B, a projection theorem for second-order 
U-statistics of a j-dependent process whose j may grow as n -+ oc, we have 
the following result. 

LEMMA A.7: Suppose Assumptions A.1 and A.2 hold, nh2 -+ oc, h -+ 0, 
and j = o(n). Then D(jI) = 2EA 2 (Z3, Z1) + Op(nlh-3) under H0, where 
Z3 (X3, X2)' and Z - (X1, Xo)'. 

The second term in (A4), H2n(j), is a third-order U-statistic. Using Lem- 
ma B.2 in Appendix B, a projection theorem for third-order dependent 
U-statistics, we obtain the following result. 

LEMMA A.8: Suppose Assumptions A.1 and A.2 hold, nh2 -+ oo, h -- 0, and 

j = o(n). Then H2n(j) = 3H2n((j) + Op(nJ3/2h-2) under H0, where H2n (j) is de- 
fined in Theorem A.1. 

This shows that H2n(j) is asymptotically equivalent to the second-order 
U-statistic 3H2n (j). We have now dealt with the first term W~21(j) in (A3). 

The second term W22zz(j) in (A3) is related to a bias-squared term, as stated 
next. 

LEMMA A.9: Suppose Assumptions A.1 and A.2 hold, nh2 -+ oc, h --- 0, 
and j - o(n). Then 

!22(j) =- EBZ,2(Z1) + Op(n71/2h4) under H0, where Z1 = 
(Xi, Xo)'. 

Finally, for the last term W23(j) in (A3), we can have the following result by 
Lemma B.1. 

LEMMA A.10: Suppose Assumptions A.1 and A.2 hold, nh2 -+ 00, h --+ 0, and 

j = o(n). Then W23(j) = C,,(j) + Op(n71h) under H0, where 
C,n(j) 

is defined in 
Theorem A.1. 

Now, by (A1)-(A4), Lemmas A.5-A.10, nh4/lnn -0 oc, and nh7 -+ 0, 
we have 

2jn,,(f, fj)= -n1L(i)n j H,(j) + 2[B, () - C,,(j)] + o(n /'h-) un- 
der H0o. This completes the proof of Theorem A.1. Q.E.D. 

PROOF OF THEOREM A.2: The proof of Theorem A.2 is similar to and sim- 
pler than the proof of Theorem A.1, because only the univariate density esti- 
mator 

g,(') 
in (3.4) is involved. Q.E.D. 
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The proof of Theorem 3.1 is completed. Q.E.D. 

PROOF OF THEOREM 3.2: (a) Because 
-4,(j) 

= Op(n7'h-2) under Ho by The- 
orem 3.1(a) and d' = O(h-2) given (3.14), we have 1(j) = Op(nZh4). By 
the inequality that I exp(x) - 1 - xl I 2x2 for small x E R and nh4/ inn -+ oo, 
we have 

I|/2(j)- 
2n(j)) = Ii - exp[-21(i)] - 21(j)|I 8< (j) = op(n1h'-). 

Hence, hniz(j) 
+ hd0 = 2hn ij(j)+ hdd + op(l) 1N(0, o2) all 

- 
o(n) 

by Theorem 3.1(a). 
(b) Let A E RP be a nonzero vector such that A'A = 1. For any fixed 

p E N+, we have ILPE 
I 
Aj[hnj',z(j) + hd ] - jl> AI[2hnjIZ(j) 

+ hdll < 

8P_1I AjhnjI"(j)--A 
0 given nh4/lnn --+ oo and maxl<, plAjl < 1. It fol- 

lows that • 
,I Aj[hnjz (j) + hd] --d+ N(0, o-2) because 

j 
E 

Aj[2hnjI,(j) 
+ 

hd] ~- N(0, 0-2), as is shown in the proof of Theorem 3.1(b). The desired 
result follows by the Cramer-Wold device. Q.E.D. 

PROOF OF THEOREM 4.1: To show Theorem 4.1, we first state a lemma, 
which is proven in Appendix B. 

LEMMA A.11: Suppose Assumptions A.1-A.4 hold, nh4/Inn -+ oc, and 
nh7 - O0. Then (a) sup,,,lg(x) - g(x)l = Op(n-1/2h-1/21nn + h2); 
(b) 

sup<(X,x2)EN(() 
L(xl) - g(x2)I = Op(n-1/2h-1/2 Inn + h2 + 8), where N() 

{(x,x2) E 2:lx1 - x21 < 8); (c) SupXEJlE*[*t(x)lX] - g(x)l I Ch2 x 

supxE 19(2) (x)|I, where and throughout 
E*(.IX) 

is the expectation with respect to 
the smoothed bootstrap distribution g(.) of the resample X* conditional on the 
original sample X; (d) supxRE I(d)(x)l = O(1) for d = 0, 1 and supxE lEI(2)(x) = 
Op(In n). 

We shall show P[TI*(j) < ulX] --* C(u) for all u E R with probability ap- 
proaching 1, where 0(.) is the N(0, 1) CDE Put S1 {supxE lg(x) - 

g(x)l i< 
C(n-1/2h-1/2 In n + h2), Supxl,x2EN(a) I(X1) - g(2) C(n-1/2h-1/2 Inn n+ h2 +58), 
where N(8) {(x1, x2) E I12: *x1 - x2I < 6}, supx IIdI(dx)l < C for d = 0, 1, 
and 

supx1 
I (2) (x)I < Cin n}, where C is a large positive constant. Let 82 be the 

complement of S1. Then 

P[In*(j) < ulX] 

= P[T* (j) < ulX n 81]P(S1) + P[T*(j) < ulX n S2]P(?2). 

Given Lemma A.11, we have for any e > 0 that there exists a sufficiently 
large constant C such that P($2) 

_ 
E for n sufficiently large. Therefore, the 

second probability P[T1*(j) 
_ 

ulX n 82]P(82) < P(2) < e. It suffices to show 
P[IT*(j) < uX n 1Si] -+ i(u) for all u e R. 
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874 Y. HONG AND H. WHITE 

Let g:(X ) and f)j(Zj*) be defined as g,(X,) and fl,(Zji) in (3.4) and (3.5), 
with X* replacing X. Then we can decompose the resampled entropy estima- 
tor as 

ln 

[ 
( f,(Z + F 

(AS) (j) =n n 3 In in<I t) 

Es (j ) 
g(Xt*)g(X,) 

tEs fj(Zj) 

-1 In n-1 n : In 

tEs*S(j) ( t txS*(j) 
g 

x 

= i, (?, go g) + 
I, 

(f, ) -f) 
-•( ), 

- if•,( , g), say, 

where fj(.) is the density of 
Zj* 

conditional on X. Because conditional on X, 
X* is i.i.d. with marginal density g(.), we have 

f.(z) 
= 

g(x),(y). 

It follows that 

-*(f1, g o ) = 0 a.s. conditional on X and 81. 
Next, we consider the second term 1j* (f, f) in (A5). We first state two the- 

orems. 

THEOREM A.3: Suppose Assumptions A.1-A.4 hold, nh4/lnn oc, 
nh7 n3 n -+ 0, and j = o(n). Then 

2Ij*(fj, f*) = -L (j) + Ht(j) + 
2[!B(j) 

- 

C ( j)] +op(n, 'h-') conditional on X n S1, where L*(j) 
- n E*[A (Z* Z )2I 

X n ] -+- E*[B,*(Z*)2IX 
n S1], and ij,(ff, fL), I (j), * B(j), and C*(j) are de- 

fined as Ijn(fj, f1), tn (j), Bn(j), and Cn(j), respectively, with 
(f•(z) 

= g(x)g(y), 
X*} replacing {fj(z), X}. 

THEOREM A.4: Suppose Assumptions A.1-A.4 hold, nh4/ Inn - 0o, nh7 x 

ln3n 
-- 

0, and j = o(n). Then for i = 1, 2, 2I,(g*, g) = 
-l*(j) ?+ 

,(j) 
+ 

2[b7(j) - 
hci(j)] 

+ op(nh-'/2) conditional on X n 1, where 1*(j) = n1 x 

E*[a*(X5, X)2IX n E1] + E*[b*(XT)21X n 1], and IP,(g*, ), I*(j), Ib*(j), 
and c`n(j) are defined as i,,(g, g), V,(j), b~(j), and i?,(j), respectively, with 

{8(.), X* } replacing {g(.), X}. 

Theorems A.3 and A.4 imply that, conditional on X n El, 

(A6) I~(j) = -nj1 {E*[A>n(Z3, Z )2IX 1 8] 

- 
2E*[ayn(X , 

Xo)21X 
0 

11]} 

- {IE*[B;,(Z )2IX 01] 
- 2E*[b 

(Xj)2I, 
01S]} 
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+ {H~ (j) - [V*(j) +?2 V(j)]} + 
2[B/ (j) 

- b(j) - (j)] 

- 2[C*(j) - 

,,(j) 

- 
,2(j)] + op(n'h-1). 

We now consider each term in (A6). First, observe that under the smoothed 

bootstrap procedure, we have fL(z) = 9(x)9(y) and 

(A7) A*,(zl, z2) = a 1(xl, x2)a(yl, Y2) 

K,(yl) Kh(x,) + a(x,x) 
a(Y, Y2) 

where K (x)- f Kh (x, y)^(y) dy. Following reasoning analogous to the 

proof of Lemma A.1, we have 

(A8) 
E*[ATn(Z, 

ZT)2IX fl1 ] - 2E*[a*(X, 
X/0)2IX 

n 1 ] 

= {E*[a (X, X2)21X n 2 

2E* [a K (X2, XI) 
Xnz n -1] 

E* , X) x S - 1 
ng (X 

i) 
= (A - 1)2 + O(1), 

where 

{E*[a*(X3*, X2*)22 ?1 ?12 

(A9) B(z)=bK(X)b(yX) K b(x) ? b(y) 

on 
] { 

that 

(AE*) E[ n - 2E*[bnS(X)E*X Xl 

= 2E[(X (x) d 
dx2 

- [1+ O(h)] 

= 
(A, 

- 1) + O(h) 

by first-order Taylor series expansions. Note that A', defined in (3.14), 
is O(h-1). 

Next, observe that when fj(z) = g(x)9(y), we have 

(A9) 
Bj*(z) 

= b* (x)b* (y) + b* (x) + 
b*n(y). 

It follows from (A9) and the fact that supx, 
Ib*,(x)[- 

O(h2Inn) conditional 

= 
2{E*[b*,(X()1% 

n 
E1]}2 
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+ 4E*[b (X*)2 1] n ]E*[b*,(X*)IX n SI] 
+ 

{E*[bn(X*)2IX 

n 
,}12 

= 2{E*[b*(X*)IX n E5]}2 + O(h6 in3 n). 

Next, we consider the fourth term in (A6). Using (A9), the i.i.d. property 
of X* given X, and reasoning similar to the proof of Lemma A.7, we have 

(All) B*(j) - b (j) - ( 

+ n' 3 

[b,(X*)b,(X*t 

) - {E*[b(X)X ]}2 

= {E*[b(XX)IX n S]}2 + Op(n1/2h4 ln2n) 

by Chebychev's inequality, independence between Zi* and Zj*, whenever t : s, 
s ? j conditional on X, and sup,, 

Ib,(x)I 
= O(h2 inn) conditional on S1. 

Moreover, using (A7), (A9), and reasoning similar to the proof of Lem- 
ma A.8, we have 

(A12) (j) - (j) - 
2,(j) 

= Op(n1/2h4 ln3/2n) 

conditional on X n El. 
Collecting (A6), (A8), (A10)-(A12), and the fact that V*(j) + V2I(j)= 

Op(ny'h-1/2) conditional on X nIl by Chebyshev's inequality, we obtain 

2hnj$W(j) = -dO + 
hnjH,,(j) 

+ Op(1) conditional on X n Sl. Following rea- 

soning similar to the proof of Theorems A.6-A.9, we can obtain 
hnjH, (j) --> 

N(O, 0-2) conditional on X n 8,. Here E*[(hnjIHI(j))2jX n S] -+ -2 by using 
the conditions that f;(z) = g(x)g(y) and g(.) is continuous on II conditional 
on X n ,1. 

The proof of Theorem 4.1 will be completed provided we show Theorems 
A.3 and A.4. 

PROOF OF THEOREM A.3: Following reasoning analogous to the proof of 
Lemma A.5, we have 

(A13) Ij(f), fL) = 
W,*(j) - fJW2*(j) 

+ Op(n7 3/2h3In n + h6 n3n) 

conditional on X 
, •$, 

where J*(j) and i2*(j) are as Wd(j) and W5(j) in (3.8), 
respectively, with {f;(z) = g(x)g(y), 

X,*} 
replacing 

{fj(z), 
X}. Here, we have 
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used the fact that, conditional on X n el, 

max sup fj,(z) - f (z)I = Op(n 12h In ni+h2n) 
1<t<n 

zeI2 

n 

n;1 E*[f(Z)- (Zt)]2 
n } = O(n h-2 -+ h4 in2 n), 

t=j+l 

which can be shown by a standard variance-bias argument for kernel estima- 
tors (e.g., Fan and Yao (2003)), the i.i.d. properties of X* conditional on X, 

f;(z) = g(x)g(y), as well as the continuity of 9(-) and supxE IE*[f$t(z)lX 
n 

S~] - f(z) = O(h2 lnn) conditional on El. 
Now we consider JW*(j) in (A13). As in treating W•i(j), we can write 

1nnj , ,1 (A14) W*((j) = - n - 
(ZJt, Zjs) 

( +A(Zjs 
Z )] 

t=j+2 s= j+l 

S 2) [n(Zn Zjs) + *Yj 
(Zs' 

Zt)] 
t=j+2 s=j+l 

n 

+ n- 
B,(Zjt), 

+ n n 
t=j+l 

1 1 

H*• 
(j) + 

2• 
*(j) + B (j), 

where A>(zi, Z2), Y* (1, z2), and B* (z) are defined as Aj,(z1, z2), yj(z, z2) 
and Bi,(z) in Theorem A.1, respectively, with f;(z) = g(z)9(y) replacing fj(z). 
Note that E*[A* (Zjt, Z2)IX] = E*[A= (z, Zjs) X] = 0, thanks to the use of 
the smoothed bootstrap. In contrast, if the naive bootstrap (i.e., resampling X* 
with replacement from X) were used, we would have 

E*[A*(Z*, z2)(X] 2 = A*(Z, z2) dFin(z) #0. 

in* jt 
22 

j 

Using reasoning analogous to the proof of Lemma A.6, we have that, with 
probability one, 

(A15) T7*(j) = 0 for all n sufficiently large 

conditional on X n &?. 
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Next, we consider W2*(j) in (A13). As when treating W2(j), we can write 

(A16) W2*1(j) 
=ni it 

(l+1 n(1 (f ([ Z ft) - f(Z*t) I2 

, j+l - h(zj) 
+f, (z Z,) - fji((zj) f (zj)- f;(zj,,) " 

2n7 
=j+ L(Z/*t) fj ((Zj*,) 

= W2*(j)+ W(j)+ 2W(j1), say. 
For the first term in (A16), we have 

1 
. 

1 
(A17) W*(j) = 2-n-D1(j) + 1nj+2n- ( 

", 

where D*(j) and 
H2(j) 

are defined as Dn(j) and H2nz(j) in (A4), respectively, 
with {f;(z) = 9(x)g(y), X*} replacing {fj(z), X}. Following reasoning analo- 
gous to the proof of Lemma A.7, we have 

(A18) D*(j) = 2E*[A* (Zj*, Z*,)21X 
nI] + Op(n'h-3) 

conditional on X n S•. Moreover, following reasoning similar to the proof of 
Lemma A.8, we have 

(A19) 
HI• 

(j) = 
3H-2n 

(j) + Op(n -3/2h-2) 

conditional on Xn 4 1, where 
H2*(j) 

is defined as H2n(j) with {fj(z)= 
9(x)g(y), X*} replacing {fj(z), X}. 

For the term 
W2(j) 

in (A16), recalling B>,(z) = 
[f/j(z) 

- 

,f(z)]/f;(z), 

we 
have 

(A20) !2"2(j) 
= E[B;n(Z)2x nF 1] + O,(n~112h4 In2n) 

conditional on X n S&. For 
W, 

/(j) in (A16), by reasoning analogous to the proof 
of Lemma A.10, we have 

(A21) 
S2(j) 

C(j) + 
Op(rn ihln1/2n) 

conditional on X Fn 8, where C(j) is defined as Cn,(j) with {f;(z) = (x)g(y), 
X*} replacing {f1(z), X}. 
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Collecting (A13)-(A21), we obtain 2Ij*;(fJ*, f;) = -L (j)+Hi*(j)+2[B (j) - 

Cn(j)] + op(nf h-1) conditional on X nr &. This completes the proof of The- 
orem A.3. Q.E.D. 

PROOF OF THEOREM A.4: The proof is similar and a bit simpler than 
the proof of Theorem A.3 because only the univariate "leave-one-out" 
X*-based density estimator 9 (Xt) 

is involved. Note that again, the smoothed 
bootstrap (but not the naive bootstrap) ensures that E*[a* (X, y)IX] 
E*[a*(x, X)IX] = 0, where a*(-,-) is defined as a,(., .) in Theorem A.2, 
with 9(.) replacing g(.). Q.E.D. 

The proof of Theorem 4.1 is completed. Q.E.D. 

PROOF OF THEOREM 4.2: (a) We first show P[T,(j)> Cn(j)] -+ 1 for 
C,(j) = o(njh). Using a variance-bias decomposition technique (i.e., ,t(.) = 
[9,(.) - Et,(.)] + [Et(-) - g(.)]), the mixing condition in Assumption A.4, 
second-order Taylor series expansions, and the jackknife kernel kb(') in (3.3), 
we can show 

(A22) sup E[g~(X,) - g(Xt)]2 
-+ 

0, 
1<t<n 

(A23) sup 
E[ft(Zjt) 

- f(Zjt)]2 __ 0, 
J<t<n 

given Assumptions A.1, A.2, and A.4, nh2 -+ oc, h -* 0, and j = o(n). 
It follows from the inequality that Iln(1 + x)l < 21x1 for small x E R, 
fj(.) > c > 0, (A23), the Cauchy-Schwarz inequality, and Markov's inequal- 
ity that 

lib(f., 
fij)l < ny- 

Ztj+I 
Ifjt(Zj,)/fj(Z,) - 1I < c-n 

=+ln Ifjt(Zj,) - 

fj(Zt,)I -- O0. Similarly, we have 
ljn,(g, 

g) + I2jn(g, g) -- 0 given (A22). 
Hence, In(j) = i,,(f1, g2)J+ Op(1) = 

Z(j)+ Op(1), where 
in,(f1, g2) -Z(j) 

- 0 
by Chebyshev's inequality and the a-mixing condition in Assumption A.4. 

Thus, (njh)-'T,(j) - 2o--1(j) -)A 
0, where 1(j) > c > 0 whenever f(., .) f 

g(.)g(-). It follows that P[T,(j) > C,(j)] - 1 for any C,(j) = op(njh). 
(b) Next, we show P[Tn(j) > T7*(j) X] -+ 1 with probability approaching 1. 

Write 

P[Tn(j) > T*(j)IX] = P[-,(j) > Tn*(j)IX n 
Sl]P(Sl) 

+ p[T (j) > f*(Ij)IX n 2]P(&2), 

where &, is defined as in the proof of Theorem 4.1, and 82 is the comple- 
ment of 

81. 
Because P(82) -+ 0 as C - oc by Lemma A.11, it suffices to 

show P[T,(j) > T7(j)IX n E,] -+ 1 under the alternative to Ho. Conditional 
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880 Y. HONG AND H. WHITE 

on X n EI, we still have T,*(j) 
_A 

N(0, 1) by Theorem 4.1. This holds regard- 
less of whether {X,} is i.i.d. or a-mixing. Therefore, conditional on X n S1, 
we have T*(j) = Op(1) and so P[T,(j) > T*(j)I)X Si] -+ 1. This completes 
the proof of Theorem 4.2. Q.E.D. 

PROOF OF THEOREM 4.3: (a) Theorem 3.1(b) immediately implies 
Q,n(p) A> N(0, 1) under Ho. On the other hand, using reasoning analogous 
to the proof of Theorem 4.1 in combination with the Cramer-Wold device, we 
can show [2hnl1(1)+ hd?, ...,2hnI,*,(p) + hd,]' A N(O, lp) conditional 
on X. It follows that 

Q,(p) 
-A N(0, 1) conditional on X. 

(b) The proofs for P[Q,,(j) > C,] 
-- 1 for C,, 

= o(nh) and P[Q~(j) > 
Qn(j)*] -- 1 when fj(-) 0 g(.)g(.) for some j E {1,..., p} are similar to Theo- 
rem 4.2. Q.E.D. 

PROOF OF THEOREM 4.4: (a) Under IH'u, we have g(x)= 1 for all x el . 
It follows that fj(z) = g(x)g(y) = 1 and the bias Bj,,(z) = 0 for all z E 112 

under H1', where B,,(.) is given in Theorem A.1. Hence, ,,(j) = Cn(j) = 0 
a.s. Furthermore, the remainder term in Lemma A.5 becomes Op(n73/2h-3 x 

Innj) because the bias Bj,,(z) = 0. Collecting all of these, we obtain 
2n1'- 

x 

E,Es,(j) 
In f ,(Zj,) = 

2In,2(f., 
f ) = 

-Ln(j) 
+ 

IHn(j) 
+ 

Op(n-3/2h-3 
n n), where, 

given Bi,,(z) = 0 and g(x) = 1, 

nj+iEA, (Z3, Z1) + EB, ,(Z1) 

= 
n,+I{[Ea 

(X3, X2) + 112 - 1 

=nj+ h-2[(1 
- 2h) k2(u) du 

+1 

+ 2h kZ(u) dudb - 1 
1 -2- 

1] = nj+ [(An )2 

by change of variables. Therefore, 2h 
SEs,,(j)lnfj,(Zj,) 

+ h[(A )2- 1] = 

hnjHl,,(j) 
+ op(l) given nh4/lnn - oo. It follows that 

T,,7'(j) 
> N(0, 1) un- 

der H'U because 
hnjIi,,(j) 

A N(0, U2) under Ho. 
(b) The proofs for the asymptotic normality of TU(j)* and Q U(p)* are simi- 

lar to the proofs of Theorems 4.1 and 4.3, respectively. Note that the bootstrap 
population density g(.) of X* conditional on X in Theorem 4.1 is now replaced 
with g(x) = 1 for all x E I, because X* is now generated from a U[0, 1] distri- 
bution. Q.E.D. 
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PROOF OF THEOREM 5.1: Following reasoning analogous to but more 
tedious than that of Theorem 3.1, we can show that 2hnjI,(j) + hdn = 

2hnjjn(fj, g o g) + hnjEH(j) + o,(l) under Hin(n-1/2h-'/2). The desired re- 
sult follows from Theorems A.5-A.9. 

The following results hold under the conditions of Theorem 5.1. 

THEOREM A.5: We have o--12hnhjln(fj, g o g) - tUj 
-0-- 

O, where tuj is defined 
in Theorem 5.1. 

THEOREM A.6: We have 
hnj[HI,(j) 

- 
Un(j)] 

4 0, where 
UI(j) 

= (2)-1 
E -=3j+2 tSIj-1l HIjn(Zt,, Zjs), and Hin(z1, z2) = Hli(z1, z2) - H2jn(Zl, z2), 
Hlj,(., .) and H2jn(., -) are as in Theorem A.1. 

THEOREM A.7: We have hnj[U7,(j) - U7,(j)] - 0, where U7(j) = (2)-1 x 

Et=3j+2 
l 

tj-1 U1n(Zat, Z1as), Ujn(Zgz, 
Zs) 

Hi,(Za,, Zgs) 
- 

E[HI,(Zg,, Zs,) 
F, 1], and {F, } is the sequence of the sigma fields generated by {X,, s t }. 

THEOREM A.8: We have var[hnjUn(j)] --+ 2. 

THEOREM A.9: We have hnjU,(j) 
- N(0, 02). 

Theorems A.6-A.9 imply hnjHI,(j) -A N(0, o-2) under H,I(n-1/2h-1/2). Note 
that H,(j) is a U-statistic of a j-dependent process {Zj,} where j is allowed 
to grow as n - 00o. In addition, the dependence between Zjt and Zj(t1j) never decays to 0 as j -- >c. However, Zj, and Zj, are mutually independent 
if t {s, s ? j, s i 2j}. We will explore this particular structure in the proofs 
of Theorems A.5-A.9. We note that Hardle and Horowitz (1993), Hirdle 
and Mammen (1993), and Fan and Li (1996) also considered degenerate 
U-statistics for independent observations. Hjellvik, Yao, and Tjostheim (1998) 
considered degenerate U-statistics for P-mixing dependent processes. These 
results do not apply to our test statistics, however. 

PROOF OF THEOREM A.5: Put 8n(z) 9 g(x)g(y)/fj(z) - 1 and ,t(j) 
In[1 + 8j,(Zjt)] - Eln[1 + 81n(Zjt)]. Then we can write 

n n 

(A24) j(f, g o g) = -n1 , (j) - n- Eln[l + 8in(Z,)] 
t=j+01 t=j+1 

-=,/(j) 
+ EI,(f,, go g). 

Under H,(a,), {Z,} is a 2j-dependent process, and Z1, and Z1, are indepen- 
dent if t ( {s, s j, s ? 2j}. Thus, {(s,(j)} is a zero-mean 2j-dependent process 

This content downloaded from 128.84.125.184 on Fri, 22 Nov 2013 14:03:33 PM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


882 Y. HONG AND H. WHITE 

with E[?,,(j)Ns(j)] = 0 if t V {s, s ? j, s i 2j}. It follows that for the first term 
in (A24), 

(A25) 
E2n(j) 

= n-2 
E[,,(j)N,(j)]1(t 

E {s, s? j, s ?2j}) 
t=j+1 s=j+1 

= O(n-; a2) 

by the Cauchy-Schwarz inequality and 
E,,(j) < 4E=)n(Zyt) 

= O(a ). The lat- 
ter follows from the inequality that Iln(1 + x)l I 21 x for small x E R and 

E[jn (Zjt)] = 0. 

Next, we consider the second term Eib(f1, g o g) in (A24). Using the in- 
equality that I ln(1 - x) - x + Ix21 <1x13 for small x E R and E[8 ,(Zj,)] = 0, 
we obtain 

(A26) 2o-1EI,(f9, g o g) 

= o-- n1 E5j(Zjt) + On- E16j,(Zi,) 13 

t=j+l t=j+l 
= 

a 
anjtj + o(an Zr 

where a-2 --1E[S (z,)] - o-' 12 q 2 (z)g(x)g(y) dxdy. The desired results 
then follow from (A24)-(A26), an = (nh)-1/2, h -- 0, and j = o(n). Q.E.D. 

PROOF OF THEOREM A.6: Given the definitions of 
H•(j) 

and Un(j), we ob- 
tain 

(A27) 
In 

(j) - 

Un(j) 

= n 
Hjn(Zjt, Zs) 

t=j+2 s=max(j+1, t-2j) 

M- Mn (j) + M2n(j), 

where 

MIn(j) = n 

H1•(Z1t, 
Z1s)1(t ( {s + j, s + 2j}), 

t=j+2 s=max(j+1,t-2j) 

M2n2() 

= L 
Hn(Z,, Zs)1(t E {s + j, s + 2j}). 

t=j+2 s=max(j+1, t-2j) 

This content downloaded from 128.84.125.184 on Fri, 22 Nov 2013 14:03:33 PM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


NONPARAMETRIC ENTROPY MEASURES 883 

Recall that Zj, and Zj, are independent if t I{s + j, s ? 2j}. Thus, for the 
term Min,(j) in (A27), we have 

(A28) E I2(j) 
-2 n t-1 t-1 

= 

n E[H,,(Z,,I Zjs) 
t=j+2 s=max(j+l, t-2j) t'=j+2 s'=max(j+1, t'-2j) 

x/H-,,(Z,,,. 
Zj,)] 

x 11(t V {s + j, s + 2j}, t' {s'+ j, s'+ 2j}) 
x 11(t, s E {t', t' j, t' ? 2j, s', s' j, s' ? 2j}) 

= O(n73jh-2), 

where the expectation in the summand is 0 if Zj, is independent of (Zj,,, Zjs,) 
(when t ? {t', t' j, t' 2j, s', s' j, s'?2j}) or if Zjs is independent of (Zjt,,, Zs, ) 
(when s {It', t' j, t' 2j, s', s' j, s' ? sj}). We also used the Cauchy-Schwarz 
inequality and 

EH,(Zj,, Zjs) = O(h-2) for t > s, j > 0. 

Next, we consider the second term M2n(j) in (A27), where Zj, and Zj, 
are not independent given t E {s + j, s + 2j}. Put Uj,(zI, z2) = 

Hj(zI, 2) - 
EHj, (zl, z2). Then 

(A29) M 
2n(j) nj 

Uj(Zj,,1Zjs)1(tE{s+j, 
s + 2j}) 

t=j+2 s=max(j+1, t-2j) 

+ 2j EHj,(Zj,, Zjs) 
t=j+2 s=max(j+1, t-2j) 

x 1(t {s + j, s + 2j}) 

- M21n (j + M22n (j), say. 

The first term M21(j) in (A29) essentially consists of two single sums over t, 
with the summands equal to Uj,(Zj,, Z(tj)) and 

Uj,(Z2,, 
Zj(t-2j)), respectively. 

Under Hj,(an) the summand Uj,(Zj,, Zj(t,_)) is a 3j-dependent process with 
mean 0 and E[Un(Zj,, Z,(tj))Jjn,,(Zj,,, Zj(t,_j))] 

= 0 if t V {t', t' ? j, t' ? 2j, 
t' i 3j}, which follows from the definition of 

U-,,(zi, z2). This implies that for 
any j e N, at most only seven pairs of (t, t') yield nonzero expectations. Simi- 

larly, the summand 
U,,(Zj,, 

Zj(t-2j)) is a 4j-dependent process with mean 0 and 

E[Un(Zg,, 
Zj(t-zj))U~f,(Z,,, Zj(t'-zj))] 

= 0 if t ( {t', t' ? j, t' 
- 
2j, t' i 3j, t' ? 4j}. 

Thus, for any j e N, at most only nine pairs of (t, t') yield nonzero expectations. 
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It follows from the Cauchy-Schwarz inequality and EHJ (Zjt, Zjs) = O(h-2) 

for t > s and j > 0 that 

(A30) EM1,(j) = O(n-3h-2). 

For the second term M22n(j) in (A29), we can obtain EHI,,(Zjt, Zj(t-j) 
0(1) and EH,,(Zjt, Zj(t-2)) = 0(1) under 

Hj,,(n-1/2h-1/2) 
by change of vari- 

ables. It follows that 

(A31) M22nn(j) = 
O(n,-). 

Combining (A27)-(A31), Chebyshev's inequality, and Markov's inequality, we 
obtain hnj[Ht(j) - Ul,(j)] = 

Op(nfl/2j1/2 
+ h) = Op(l) given j = o(n) and 

h -+0. Q.E.D. 

PROOF OF THEOREM A.7: Given the definitions of U,(j) and U,(j), 
we obtain Un(j) - _n(j) 

= ("j)-' =3j+2 
sj-1 EI[HE(Zj,, Z-s)], 

where 

Zjt and Zj, are independent given t > s + 2j. Note that for t > s + 2j, the condi- 
tional expectation E,_1[Hj,(Zj,, Zjs)] is a function of (Xt,_, Zjs) under HjI,(a,), 
so we denote Gj,(X,_j, Zs) = E,_1[Hj,,(Zjt, Zjs)]. Observe that Gj,,(x, Zjs) 
is a zero-mean 2j-dependent process with E[Gj,(x , Zj,s)Gj,(x2, Zis2)] = 0 
if s1 0 {s2, S2 ? j, s2 ? 2j}. Similarly, Gj,(X,_j, z) is a zero-mean j-dependent 
process with mean 0 and E[GJ,,(X, _j, z)Gji(Xt2-, 2)] = 0 if tl 0 (t2, t2 ? j. 
It follows that 

E[ 
U-n 

(j) -_Un 
(j)]2 

2 

n n t1-2j-1 t2 -2j-1 

x E[G,,(X,,71, Zj,1)G,(XA21, Z1)iS2] 
tl=3j+2 t2=3j+2 sl=j+l s2=j+l 

x 1l(tl e {t2, t2 ? j}, S1 E (S2, S2 ? j, S2 2j}) 
= O(n72h-'), 

where the expectation in the summand is 0 if Xt,_j and X,2 are inde- 
pendent or if Zj, and Z1,2 are independent. We also used the fact that 

EG,,(X,_, Zis) = O(h-1) for t > s + 2j, which is proven below. There- 
fore, hn[U,,(j) 

- U,(j)] = 
Op(h'/2) = Op(l) by Chebyshev's inequality and 

h -0. 
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It remains to show EG2,(X,_ , Zj,) = O(h-1) for t > s + 2j. By the definition 
of 

Gj,(X,_j, Zjs), we have 

(A32) EGZ,(X,_j, ZIs) 

< 
2E{E[Hjn(Zj,, 

Z 
_s).Ft_1]}2 

+ 2E{E[H2jn(Zjt, Zjs)It,_1]}2. 

For the first term in (A32), we have that, for all n sufficiently large, 

E[Hljn(Zjt, Zjs), Ft_1] 
= E[Ajn(Zjt, Zjs)j(t-,_]+ E[Ain(Zis, 

Zjt)jF•tl1] = an(Xt-j, Xsj) 

fo Kh(X, X,)g1(xIX,_j) dx 
+ an (Xtj, X,_j ) agi(Xs I Xj) 

where gi(xjy) - g1,(xly) is the conditional density of X, = x given X,_ = y. 
Under 

Hi,,(an) 
and Assumption A.5, fj Kh(xl, x2)gj(x1ly2) dXl/gj(x21y2) -2 1 

uniformly in (x2, Y2) E If2. It follows that 

(A33) 

E{E[Hljn(Zj,, 
Zjs)Ft-1]}2 

< CEa2(X,_jX _) 

= Ch-1 k2(u) du[1 + o(1)] 

for n sufficiently large. Similarly, we have for all n sufficiently large 

(A34) E{E[H2jn(Z,, Z,, 
),tl]}2 

< Chf [- k(v)k(u + v) dv du [1 + o(1)]. 

Combining (A32)-(A34) yields EG2 (Xt,_, Zjs) = O(h-1). This completes the 
proof. Q.E.D. 

PROOF OF THEOREM A.8: Write 

U(j)= n 
U(j) 

and 

U,(j)- 

U(ZZ). 
t=3j+1 s=j+1 
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Because {U,,(j), t,1} is a martingale difference sequence (m.d.s.), we have 

E[U (j)] = (')-2 ',-3j+2 EU,,(j), where 

t-2j-1 t-2j-1 

(A35) EU,(j)= L L E[Un(Zt, Z1, )U,,(Z1,, Z 2)] 
s2=j+1 

Sl 
=j+1 

x 1(sI E {S2, S2 j, S2 ? 2?j}), 

where the expectation in the summand is 0 if sV I {s2, s2 ? j, s2 ? 2j}. 
We first consider the term with sl = s2. Recalling the definition of U1j(., .) and using the law of iterated expectations, we have for t > s + 2j, 

(A36) 
EUJ2(Zj, Zjs) 

= EH,2(Z,,, 
Zjs) 

- 
EG2,,(X,_j, ZIs). 

For the first term in (A36), we have 

(A37) EH,,(Zj,, Zjs) = EH• (Z1,, 
Zjs) 

+ EH2,,(Z1,, Zs) 
- 2E[HJ,jn(Zj,, Zjs)H2jn(Zjt, Zjs)]. 

By straightforward algebra (mainly change of variables), we have for t > s + 2j, 

(A38) EH2,1(Z, 

Zj)- 

=4 
4 Aj2(ZI, z2)fj(z1)fj(z2) dz dz2 

= 4h-2 k2(u)du[1 + o(1)], 

(A39) 
EH2,(Z,, Zj,) 

= h-2 k(v)k(u + v) dv du [1 + (1)], 

(A40) E[Hn,,(Z,, Zj, )H2jn(Zj,, Zjs)] 

= 2h-[ k(u)k(v)k(u + v)dudv [1 + o(1)]. 

Note that the boundary correction due to the use of the jackknife kernel kb() 
contributes to the negligible o(1) terms in (A38)-(A40). 
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Combining (A36)-(A40) and 
EG• 

(X,_j, Zj,) = O(h-1) for t > s + 2j, 
we have 

(A41) hz2EU2,(Zjt,, Zjs) 

S4 k2(u) du] + l k(v)k(u + v) dv du] 
J11 21 

- 4 k(u)k(v)k(u + v) du dv 
-1 J-1 

= I 12k(u)k(u') 

- k(u + v)k(v) dv k(u' + v')k(v') dvj' dudu' 
-1 J-1 

02 

2 

By analogous reasoning, we can obtain that under H, (a,) and sl, s2 < t - 2j, 

(A42) h2E[U1j(Zj, Zjs,), Uj,(Zjt, Zjs2)] = O(an) if S1 E {S2 ? j, S2 ? 2j}. 

It follows from (A35), (A41)-(A42), and j = o(n) that E[njhU(j)]2- o 2. 
Q.E.D. 

PROOF OF THEOREM A.9: Let Ut(j) be defined as in the proof of Theo- 
rem A.8. Because {fU,,(j), 

T_l} 
is an m.d.s., we use Brown's (1971) martingale 

theorem, which states that var[ U,(j)]-1/2 U(j) A N(0, 1) if 

(A43) var-l[( (j)] nj 
(2) 

x j E{UI((j)1[I nt(j)I > En2var1/2[&n(j)]]} -~ 0 VE > 0, 
t=3j+2 

and 

(A44) var -[UJ(1)] 2 E 
[glzt j)I.Y,_-] 

1. 
t=3j+2 
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We now verify these two conditions. Given Theorem A.8, we can verify condi- 
tion (A43) by showing that (hnj)4(j)-4 =3j+2 EUn4(j) 

--- 0. Observe that 

St-2j f1 t-2j-I 

x 
1(sl 

e 
{s2, 

S2 j, S2 i 
2j}) 

( <+ 2 
U;(,,(Z 

, jZs,)Uj,,(Z,, Zjs2 
s1 =j+l s2=j+1 

x n (s E 
{s2, 

S2 ? j, S2 ? 
2j})] 

- 
2U4rrt(j) 

+ 
2U2,t(j), say. 

For the first term U4t (j) in (A45), we have 
t-2j-1 t-2j- 1 

(A46) EU4~t(j) < 
1 [EU4(Zt, Zis)EU,,(ZtI, Z S2)]1/2 

st =j+1 s2 =j+1 

x 
1(sl 

E 
{s2, 

S2 i j, s2 2j}) } 

= O[(t - 2j)2h-6] 

by Minkowski's inequality and 
EU4,(Zt, 

Z15) < EH4.(Zj,, 
Z1s) = O(h-6) for 

t > s + 2j, which follows by change of variables. 
For the term 

U4I,(j) 
in (A45), where Z1,, and Zvs2 are independent given 

sl 4 {s2, S2 ? j, S2 + 2j}, we have 

t-2j-1 t-2j-1 t-2j-1 t-2j-1 
(A47) 

E[Unt,(j)] 

= 
[ ( Z E[Uj,,(Z,, 

Zs)U,(Z,, Zs) 
sl =j+1 s2=j+l sl =j+1 sj=j+1 

x 
u,,n(Zj,, Zi)Un,(Zi,, Zjs;) 

x 
S1 

( {s12, s2 {s , S2 ? 2j?}, sg {s , S2 I j, s1 2j l) 

S1(S1 S2E { S1 j, S12j, , s j,s s 1?2j}) 
= O[(t - 2j)2h-6], 
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where the expectation in the summand is 0 if Zj,, is independent of (Zj,,, Zj,) 
or if Zj,2 is independent of (Zjs, Z14). We also made use of the Cauchy- 
Schwarz inequality and EH4(Zj,, Zj,) = O(h-6) for t > s + 2j by change of 
variables. Thus, from (A45)-(A47), nh4/ ln n -- 0, and j = o(n), we have 

(hnj)4( j)-4 ~ •3j+2EU,(j) 
= O(n h-2) -+ 0. This ensures that condition 

(A43) holds. 
We now verify (A44) by showing (hnj)4E{(n)-2-2 

•3j+2E[Jz,(j)jFl] 
- 

EU t(j)}2 -+ 0. We write 

t-2j-1 t-2j-1 

(A48) Et-1[2t(j)] ,= E,_E1[Ujn(Zjt, Zjs,)Ujn(Zjt, Zs2)] 
sl=j+l s2=j+l 

x 1(S1 E (S2, S2 f j, S2 2jj}) 
t-2j-1 t-2j-1 

+- 1 E1t-[UJn(Zj, Zjs )Ujn(ZJ, ZJs2)] 
s2=j+l sl=j+l 

x 1(sl ( {2, S2 
- j, S2 ? 2j}) 

SM3nt(j) + Qt(j), say, 

where EQlnt(j) = 0 because Zjt, Zjsl, and Zjs2 are mutually independent. Put 

-jn1(Xtj, z1, Z2) = 
Et-1[Ujn(Zjt, zD)Ujn(Zjt, z2)] - Qjn (Z1, Z2), 

where 
••,(zl, 

z2) - E[Ujn(Zjt, zi)Ujn(Zjt, z2)]. Then we can write 

(A49) M3nt,(j) Q2nt(j) + Q3nt(j) + Q4nt(j), 

where 

t-2j-1 t-2j-1 

Q2nt(j) = W 
-jn(Xt-j 

Zjs, ZIs2)1(s1 E (S2, S2 ? j, S2 L 2j}), 
sl=j+l s2=j+l 

t-2j-1 t-2j-1 

Q3nt [njn(Zjsl, Zj2) - Efjn(Zjs1, ZiS2)] 
sl =j+l s2=j+l 

x 1(s1 e {s2, S2 j, S2 + 2j}), 
t-2j-1 t-2j-1 

Q4nt(j) - E1n,(Zs,,, 
Zjs2)1(s1 

E (S2, S2 ]j, S2 ? 2j}). 
s1 =j+l s2=j+l 
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890 Y. HONG AND H. WHITE 

Because 
EQc,,,(j) 

= 0 for c = 1, 2, 3, we have EU,(j) = Q4nt(j). This, (A48), 
and (A49) imply Et1[j,(j)1 - E- (j) c= T Qcnt(j). It follows that 

(A50) E 
{E,-I[U(,(j)]- Eunt(j) < -16 E 1 Qct(j) 

? t=3j+2 c=1 t=3j+2 

For the first term Qljnt in (A48), we have 

(A51) EOQ t(j) 
t-2j-1 t-2j-1 t-2j-1 t-2j-1 

=E 3 : Y YE,_[U(Z ,, Zj,)Uj(Zj,, Zs2)] 
sl =j+l s2=j+l s' =j+l s'=j+l 

x E,_, [U(Zj,, zs)U.,,(zj,, Zjs; )] 
x I(s1 (s2, s2 

( j, s2 ? 2j}, s' ( Is', s' j, s' ?I 2j}) 

x1 (sI, S2 e IS', S'1 j, S 2j, s2, S2 ? j, S' ? 2j}) 

= O[(t - 2j)2h-3], 

where the expectation in the summand is 0 if Zjs, is independent of (Zj,,, Zjs,) 
or if 

Zj 
2 is independent of (Zj1,, Zj;4). We also have used the fact that 

E{Et_1[Ujn(Zjt, Zjs )Ujn(Zj, Zjs2)]}2 = O(h-3), where Zjt, Zjsl, and ZjS2 are 
mutually independent, which follows by change of variables. 

Next, we consider the term Q2n,(j) in (A49). Noting that 
{QDj(X,_j, 

Z1, z2)} 
is a j-dependent process with mean 0 and 

E[V2j,(X,_jz, z, Z)f2jn(Xt,,_j, 
z1, 

z2)] = 0 if t I {t', t' ? j}, we have, by Minkowski's inequality, 

(A52) E 
=3jQ2nt(j)] 

n-2j-1 n-2j-1 n 2]1/2 

L<KE jV f;(X,_;, Zs, Z;- ) 
si = j+ s2=j+l 1 t=min(s1,s2)+2j+l 

x 
1(sl 

E 
{s2, 

S2 

+ 
j, S2 

+ 
2j}) 

= O(n h-6), 
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NONPARAMETRIC ENTROPY MEASURES 891 

where 

E E 
,...,Zjsi, 

z s2) 
t=min(sl,s2)+2j+1 

n n 
= E [Dhn(X, _ , Z ,, ,IZyi) 

t=min(sl, s2 )+2j+ 1 t'=min(sl, s2)+2j+1 

x nijn (X1-,, ZiS,, 
,Zjs,2 x 1(t E {t', t' j}) 

= O[(n - 2j)h-61, 

where the expectation in the summand is 0 if X,_j and 
Xt,_j 

are inde- 

pendent. We also used the fact that 
E'•2n(Xt_j,2 

ZjS1, Zjs2) 
= O(h-6) by the 

Cauchy-Schwarz inequality, Jensen's inequality, and EH,~(Zjt, Zjs) = O(h-6) 
for t > s + 2j. 

Finally, observe that Q3nt(j) in (A49) essentially consists of five single sums 
over sl with the summands equal to 21j(Z1s1, Zjs2) - E2jn (Zjsl, Zjs2), where 
s2 = s S1 j, Sl ? 2j, respectively. This has a structure similar to that of M21n (j) 
in (A29). Thus, following reasoning analogous to that ((A30) and related argu- 
ment) for 

EMlz,1(j), 
we can obtain EQet(j) = O[(t - 2j)h-6], where we make 

use of the fact that E2 ,(j) = O(h-6). It follows by Minkowski's inequality that 

n2- 

2 n 2 

(A53) E Q3nt(j) <E [EQ (j,, )]1/2 = O(nh-6). 
t=3j+2 t=3j+2 

Combining (A50)-(A53) yields (hnj)4 
(n)-4E{En_3j+2[E,_[U2t(j)] 

- 

EUt(j)]}2 = O(h + 
n•h-2) 

-0 given h - 0, nh4/lnn -- 0, and j = o(n). 

Thus, (A44) holds, so that njhUc(j) 
-* N(0, o2) by Brown's theorem. 

Q.E.D. 
The proof of Theorem 5.1 is completed. Q.E.D. 

APPENDIX B: PROOFS OF TECHNICAL LEMMAS 

LEMMA B.1: Put Zjt, (X, Xt-j)', where j = o(n) and {X,} is i.i.d. with 
CDF G(.). Consider a second-order U-statistic 

t=j+2 s=j+l 
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892 Y. HONG AND H. WHITE 

where in(., ") 
is a kernel function such that ijn (Z1, Z2) = 

4jn(Z2, Z1) 
and 

E•2n(Z0, 
Zjs) = 

O(C2n).Put 
4jnO - f2 (Pi(z1, z2) dF,(z1) dFj(z2) and 

4ni(z) 
f22 jin(z, z') dF,(z'), where F1(z) = G(x)G(y) and z = (x, y)'. Then 4n(j) = 

Pino ? 2n7-' j I 
t+1[4ini(Zjt) 

- O ]+ 
Op(nf'cj). If in addition E(2 I(Zj,) < C 

and c,,j = O(nj), then 
n,(j) 

= fPno + 
Op(nf'1/2)? 

PROOF: Put O4jn(zl, z2) jn(Z],Z2) - 2 jnl (Z1) - 4jn1(z2) + 4jn0. Then 

(Bl) f jn(zi, 
z) dFj(z) jn(z, z2) dFj(z)= 

0 Vz1, z2 eI2. 

By straightforward algebra, we can write 

n 

(B2) n(j) = 
jhno + 2n (Z,) - 

jnOl] 
t=j+ 1 

+ j - 1 Cnt- 
jn(Zjt, Zjs) 

t=j+2 s=j+1 

n 

= jnO 
+ 

2n1' 
[, 

)j(Zjt) - 
4,jno] 

+ f4(j), say. 
t= j+l 

For the last term 4U(j) in (B2), we write 

-1 n t-1 
(B3) n (j) C2 )jn(Zj,, Zs) l1(t 0s + j) 

t=j+2 s= j+ 

?+ njE) L jn(Zj,, Zj(t-j)) ( ) 
t=j+2 

= nl(j) + 4tn2(j), say, 

where the second term 4n2(j) corresponds to t = s + j. We have E l n2(j) I 

O(nf'c, ) by the Cauchy-Schwarz inequality and 
E••(Zyj, 

Zjs) = O(c ). For 
the first term 

l,,(j), observing that Zj, and Zj, are independent given t = s + j, 
we obtain 

E ]2 (j = E[ j,(Zj,, Zjs)4j,(Zj,,, Zjs,)] 
t= j+2 s=j+1 t' j+2 s'= j+1 

x 1(t s+j,t' s'+j) 
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NONPARAMETRIC ENTROPY MEASURES 893 

x 1(t, sE t', t' js, s', s'j}) 
0(-2C2 = 

O(n2Cn2 
), 

where the last equality follows from (Bl) and the Cauchy-Schwarz inequal- 
ity. It follows that ,K(j) = 

Op(n-71c,) 
by (B3), Chebyshev's inequality, and 

Markov's inequality. Hence, we have ,,(j) = 4Jin + 2n7' Ln=+l[41il(Z1t) - 

4jno] + Op(ny1Cni). 
Next, noting that 4jnl(Zjt) - 1jno is a j-dependent process with mean 0, 

E[4i,)(Zt,) - 
•,jo]2 

< C, and E{[4il(Zjt) - 4 
no0][4ni(Zs)- 

io0]} = 0 for 
t V {s, s ? j}, we have E{n71 

Enj+l[4jnl(Zt) 
- =oC12 = O(n-') because only 

the summands with t = s, s ? j are nonzero. Thus, we have O,(j) = O,(j) + 
Op(n71/2) by Chebyshev's inequality. This completes the proof. Q.E.D. 

LEMMA B.2: Put Zj, = (Xt, X,-j)', where j = o(n) and {Xt} is i.i.d. with 
CDF G(.). Consider a third-order U-statistic 

nj> 3 
Jn(Zt zjsn 

t-1 s-1 

t=j+3 s=j+2 r=j+l 

where 
,jn (., ., .) is a kernel symmetric in its arguments, with E 4 (Z1,, Zj s, Zr) = 

O(c,,) and 

(B4) 
f4in(ZI 

Z2, Z3) dFi(z2) dFj(z3) 
0 zV zE2 

where F,(z) = G(x)G(y) and z = (x, y)'. Put 4jn22(z1,Z2) f22 Oin(ZlZ2, 
Z3) dFj(z3). Then we have ,(j) = 3()- j+2 1 2(Z, t-) + 

2 
Esj+l 

(jn2(Zjt7 
Zjs)-+ Op (nj3/2Cjn). 

PROOF: Put ,jn(z1, z2, Z3) jin(Z1, Z2, Z3) - 1jn2(zl, Z2) - 4jn2(Z2, Z3)- 

Ojn2(Z3, Z1). Then 4jy,(', 
", 

) is symmetric in its arguments, with 

(B5) f 4jn(Z1 iZ, Z3) dFj(z3)= 0 V z1, z2 E [2 

given (B4). By straightforward algebra, we can write 

n(B6 l t-1 
(B6) n(j) = 3 n2 O jn2(Zjt5, Zjs) 

t= j+2 s= j+ 

f L 
jn(ZJ, Zjs, Zjr) 

t=j+3 s=jj+2 r=j+1 
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894 Y. HONG AND H. WHITE 

= 3n2(j) + (P(j), say. 

For the last term 4,(j) in (B6), we have the decomposition 

(B7) k,(j) = L 
fj(Zt, Zjs, Zjr)1(t = S + j) 

t>s>r 

+ j 
,in(Z,, 

Zis, Zjr)(t 
s + j, s = r + j) 

t>s>r 

+ 3 E kjn(Zjt, Zi,,Zjr)J1(t #s+j,s Ar+j,t=r+j) 
t>s>r 

+ Y 
-J"(Z,, 

Zs,, Zjr,)1(t s + j, s sr + j, t =r + j) 
t>s>r 

= •n (j) + 4n2(j)+ &n3(j) + On4 (j), say. 

Noting that &,l(j) is a double sum over (s, r) and that 
Zj, 

is indepen- 
dent of 

(Zj(s+j), Zjs) if s r + j, we have 
E2 

(j) = o(ni nc) given (B5), 
E402 (Zt, Zjs, Zr) = O(cj]), and the Cauchy-Schwarz inequality. Similarly, 
we have E 2(j) = o(n C n) 

and E 
n3(j) 

= o(ncn ). Finally, we consider 

E~ 4(j) = 3 
E[$,Jn(Zjt,, 

Zjsl, zjrl, ),Jn(Zjt2, Zj,2, Zjr2)] 
tl>sl>rl t2>s2>r2 
x 1(t 0slt + j, si r + j, ti 

rl 
+ j) 

x 1( t2 S + , S2 r2 j, t2 #r2 +j). 
Because 

ZjI, 
Zj,,, and Zjr, are independent given 

tx 
> s, > rl, ti s1 + j, 

s ri r+ j, and t1 Z r1 + j, each of them must be dependent on at least one of 

(Z4t2, Zjs2, Zjr2) to have a nonzero expectation. This occurs if and only if each 
of (tl, si, rl) is equal to t or L i j, where L is one of (tz, s2, r2). Thus, E~4 (J) 
consists of only finitely many triple sums over (t2, S2, r2), so it is bounded 
by 

0(n3n. 
It follows that E02 3 

C2 by 
O(njcJr,). 

It follows that E44(j) = o(nc), whence, from (B7), we obtain 

E02 (j) = 
o(njc,). 

This and (B6) yield the desired result. Q.E.D. 

We now prove Lemmas A.1-A.11. 

PROOF OF LEMMA A.1: Put Kh(X) - EKh(x,Xl). Then when fj(z) 
g(x)g(y), we have 

(B8) 
An(zI, 

z2) = a(xl, xz>)an(y1, Y2) 

Kh (Yl) Kh(X1) 
K ++ a,,(x, x2 (y1, y2) 
g(y1) g(xl) 
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where zl = (xl, yl) and z2 = (x2, y2). Because Z1 and Z3 are independent, 
fj(.) = g(-)g(.) under Ho, and Ean(X3, X1) = 0, we have from (B8) that 

(B9) EA2,(Z3, Z1) - 2Ea 
n(X3, 

X1) 

=(E[a(X3, X,)]}+2E (X3, X,)] - 1 + J g2E[aX )] g(X3) 

= {E[a2(X3, X)1]2 + O(h), 
where E[a2(X3, X1)] = O(h-1) by change of variables, and continuity of g(.) 
and E[Kh(X3)/g(X3)]2 - 1 = [Eb2(X3)]2 + 2Eb,,(X3) = O(h2) given 

supx~Ib,(x) 
= O(h2), which follows by change of variables, a second-order 

Taylor series expansion, boundedness of g(2)(x), and the use of the jackknife 
kernel kb (). 

By change of variables x1 = x2 + hu and Taylor series expansions (first- 
order Taylor series expansion when x3 E [0, h) U (1 - h, 1] and second-order 

Taylor series expansion when x3 e [h, 1 - h]), we can obtain E[a2(X3, X1)] = 

E[Kh(X3, X1)/g(X3)]2 
- {E[Kh(X3)/g(X3)]}2 = Ao _ 1+ O(h). It follows that 

{E[a2 (X3, X1)]}2 
= d' + 0(1). This and (B9) imply Lemma A.1. Q.E.D. 

PROOF OF LEMMA A.2: When f1(z) = g(x)g(y) under H0, we have 

(B10) Bj,,(z) = b,(x)b,(y) + bn(x) + b,,(y). 

This and supx Ibn,(x)I = O(h2) imply Lemma A.2, namely 

EB2 (Z) - 2Eb 2 (XI) 

= 2[Eb,(Xl)]2 + [Eb2(X1)]2 + 4E[b 2(X,)]E[b,(XI)] 

= 2[Eb,(X )]2 + O(h6). Q.E.D. 

PROOF OF LEMMA A.3: Using (B10), we have 

Bn (j) - 
bi,,n(j) 

- b2n(I) 

n 
= 

[Ebn(XI)]2 
+ nf1 j 

bn,(Xt)bn(Xtj) 
- 

E[b,,(Xt)bn(Xtj)]} t=j+1 

= 
[Eb,,(X1)]2 

+ 
Op(n-71/2h4), 

where the last equality follows by Chebyshev's inequality, the fact that 

Zj, and Zj, are mutually independent for t s, s j under Hol, and 

supx* 
Ib,(x)I = O(h2). Q.E.D. 
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PROOF OF LEMMA A.4: Put 
c,,(X,) = 

fo an(x, 
Xt)b,,(x)g(x) 

dx. Using (B8), 
(B10), and fj(z) 

= g(x)g(y) under Ho, we have 

Aj n (Z, Zjt)Bjn 
(Z))f.(z) 

dz 

= cn(Xt) + cn(Xt-j) + c,(Xt)c,(Xtj) 

+ [cn(Xt) + cn(X,1j)] fb,(y)(y) dy 

+ c,,(X,) an(y, Xt-j)g(y) dy 

+ cn(Xj) j aI (x, Xt)g(x) dx 

+ [c,(Xt) + cn(Xtj)] Kh (y)bbn(y) dy 

+ [fa,(x, X,)g(x) dx + fan(y, X,_)g(y) dy 

x f Kh(x)bn(x)dx 

5 

Scn(Xt) + cn(X,_j) + L 
i,,(Zi,), say. 

i=1 

It follows that C 
,(j) 

- ln(j) - C2n(j) = ~ 1 i(j) 
= Op(nJ/2h4), where 8i(j) 

ny- E= j+ 81,(Zt,) and the second equality follows by Chebyshev's inequality, 
supxc Ib,(x) = O(h2), and the fact that for any given y e (0, 1) and for all n 
sufficiently large (so that y/l h -+ + and (1 - y)/ h - +oo), we have 

jKh(x, y)dx 

= Kh(X, y) dx + Kh(X, y) dx + Kh(x, y) dx = 1 
01fl-hKfh 

by change of variables and Assumption A.2, where, for n sufficiently large, 
the first two terms are identically zero given that k(-) has bounded support 
on [-1, 1], and the last term is equal to unity identically given f•, k(u) du = 1. 

This latter fact implies that fo a,,(x, y)g(x) dx = 0 for y E (0, 1) and fo b,(x) x 

g(x) dx = 0 for n sufficiently large. As a result, we have 62(j)= 3(j) = 

=s(j) = 0 a.s. for n sufficiently large. Q.E.D. 
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PROOF OF LEMMA A.5: By a standard variance-bias argument for ker- 
nel estimators (e.g., Fan and Yao (2003)), we have that under Assumptions 
A.1 and A.2 and H0, 

(B11) max sup jIf(z) - f(z) = 
Op(nj1/2h-'lnnj 

+ h2), 1<t<n 
zE• 
n 

(B12) 
n-' 

_ 
E[fJ,(Zi) -fj(Zjt)]2 

=O(nh-2 h4). 
t=j+l 

Note that the fact that j may grow as n - oo does not affect the conver- 
gence rates because Zj and Zj, are independent if t i {s, s ? j}. It follows 
from (B11) and (B12) that 

n 

(B13) n-' C~ lL(Z,) - f-(Zf,)l3 
t=j+l 

< maxsup 
fjt(z) 

- 
fj(z)lni [j(Z) - fj(Zjt)]2 

1<t<n zEIl 
t=j+l 

= Op(n7312h-3 In nj + h6). 

Now, using the inequality that I ln(1 + x) - x + x2I 
3 

xV for small x E R, 
we obtain 

(B14) f -1 
ft(Zt) 

- 
ff(Zt 

) 1 
[fi(Zjt) 

- 
f(Z) (14) fi fj tf; 

- 

W n + C t - 
Ezn(j) fi(Zi) i+ fi (Z ) 2 f (Z ,) (j) tSn (j) 

-n f,(Z fj;(Zjt) 
3- 

O,(n 73/2h-3 In nj + 
h61 

by (B13). Also, recalling the definitions of WJ1(j) and WV2(j) in (3.8), we have 

(B15) nl fJt(Zjt)- fJ(ZJt) 

tESn(j) 
f ( Zj ) 

1 
Ft(Zt) 

- fj(Zjt) 
2 

teSn(j) 

rt= j+l 
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= Opn EL fi,(Zt) - f1(Z,)] 

t=j+1 

fi(Z,) 

= Op(n 3/2h-3 Innj + h6), 

where we used (Bl1), (B12) and the fact that 

P(t E S,(j)) = 
P(fjt(Zjt) _ 

0) 
_ 

P[Ifj,(Z,) - 
f-(ZP,)I 

> 
fj(Z,)] 

< 
E fit(Zt) - 

fJ(Zt) f-(Z4,) 
It follows from (B14) and (B15) that 

ij,(f~ fj) 
- W• (j)+ W2(j) = Op(n3/2 X 

h-3/ In n1 + h6). Q.E.D. 

PROOF OF LEMMA A.6: As shown in the proof of Lemma A.4, foI Kh(X, 
y) dx = 1 for y E (0, 1) and for all n sufficiently large. In follows that 

P[*y,(Zj,, Zj,) = 0 for all n sufficiently large] = 1 under H0, whence, we have 
that with probability one, TF(j) = 0 for all n sufficiently large. Q.E.D. 

PROOF OF LEMMA A.7: We apply Lemma B.1, with ~jn(z1, Z2)= 

h2D,,n(z, 
Z2). By the Cauchy-Schwarz inequality, Jensen's inequality, and 

c < f(z) < C, we have E[h2Dj,(Zjt, Zjs)]2 < Ch4fE4 A4n(zI, Z2) dzl dz2 
O(h-2) = o(nj), by change of variables and njh4/lnnj 

- oc. Also, we can 
verify that ~Ejnl(Zj,) < C. Hence, the condition of Lemma B.1 holds and 

so h2D~(j) = h2 f4 Dj,(zn , z2)fj(zI)fj(z2) dzi dz2 + Op(n 1/2) = 2h2EA2 (Z3, 

ZI) + Op(n'1/2). Q.E.D. 

PROOF OF LEMMA A.8: We apply Lemma B.2, putting 
4j,,(Z1,Z2, Z3)= 

H2jn(Zlz2, z2, 2). Then 42jn(z1, Z2) = f2 jn2(Z1, z2, z3)fj(z3) dz3 = 
H2jn(Zl, z2), 

and the result of Lemma A.8 follows immediately from Lemma B.2 
with 

Cjn, 
=h-2 because E42(Zjt, Zjs, Zr) < c-lh2 S A,(zl, 

z2)An(ZI, Z3) dzl dz2 dZ3 = o(h-2). Q.E.D. 

PROOF OF LEMMA A.9: By Chebyshev's inequality, 
EB4,(ZI) 

= O(h'), and 
independence between Zjt and Zjs unless t E {s, s ? j} under Ho, we im- 

mediately obtain W22(j) = EB2 (Z1) + nf 
-,y[B2,(Zj,) 

- 
EB2n(Z)] 

- 

EBj,(Zi) 
+ Op(n71/2h4). Q.E.D. 

PROOF OF LEMMA A.10: Put C1,(zl, z2) - Aj,(zl, z2)Bgjn(Z) 
+ Ajn(z2, z1) X 

B,(z2). Then W23() = n()1 
•• =j+2 

Cn(ZJ, 
Zs). 

We now apply Lem- 

ma B.1, putting 
41j(Z1, 

z2) = 
h-2Cjn(z1, z2). Because E2 

(Zj,, Z1s) < 2h-4 x 
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j '4 
An(z1, 

z2)Bj,(zl) dzl dz2 = O(h-2) = o(nj) by supZE2 IBjn(z)J = O(h2) and 

change of variables, we have h-223 (j) = h-2Cn(j) + op(nj1/2) by Lemma B.1. 
Q.E.D. 

PROOF OF LEMMA A.11: (a) Part (a) is a standard result available in most 
standard nonparametric density textbooks (e.g., Fan and Yao (2003)). 

(b) We now show part (b). Given (xl) - 9(x2) = [9(x1) - g(xl)] - 1[(x2) 
- 

g(x2)] + [g(x1) - g(x2)], we have supX1 
x2•N(8) 

1- 9(x2)1 < 2 SupxE, I (x) - 

g(x)I+ sUPxl,x2EN() 1g(x1) - g(x2)I = 
OP(n-1/2h-1/2 Inn + h2) + 0(8), where the 

last equality follows from part (a) and the continuous differentiability of g(.) 
on If. 

(c) By a second-order Taylor series expansion and the properties of the jack- 
knife kernel kb('), we have for all x e I(, 

E*[9*(x)IX] - 
,(x) 

= Kh(x, x*)g(x*) dx* - g(x) 

21 

1 

- h2 
1 U2Kb(x) (U)(2)(x ? Auh) du, 

where b(x) = x/h for x E [0, h), b(x) = (1 - x)/h for x E (1 - h, 1], and 
b(x) = 1 for x E [h, 1 - h]. 

(d) The desired result follows given nh5 = 0(1) because 

sup l (2)(x)I < sup l•(2)(x) - EA(2)(x)l + sup IE (2)(x)I 
x&J xelI x•1T 

= O,(n-1/2h-5/2 In n) + 0(1) = Op(ln n), 

where the first term follows from an argument similar to the proof for 

supXEE I1(x) 
- 

E9(x)l. Q.E.D. 
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