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Abstract

This paper proposes a class of asymptotic N(0; 1) tests for volatility spillover be-
tween two time series that exhibit conditional heteroskedasticity and may have in,nite
unconditional variances. The tests are based on a weighted sum of squared sample
cross-correlations between two squared standardized residuals. We allow to use all the
sample cross-correlations, and introduce a 1exible weighting scheme for the sample
cross-correlation at each lag. Cheung and Ng (1996) test and Granger (1969)-type
regression-based test can be viewed as uniform weighting because they give equal
weighting to each lag. Non-uniform weighting often gives better power than uni-
form weighting, as is illustrated in a simulation study. We apply the new tests to
study Granger-causalities between two weekly nominal U.S. dollar exchange rates—
Deutschemark and Japanese yen. It is found that for causality in mean, there exists
only simultaneous interaction between the two exchange rates. For causality in vari-
ance, there also exists strong simultaneous interaction between them. Moreover, a
change in past Deutschemark volatility Granger-causes a change in current Japanese
yen volatility, but a change in past Japanese yen volatility does not Granger-cause a
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1. Introduction

Detection and elucidation of volatility spillover across diGerent assets or
markets is important in ,nance and macroeconomics (e.g., Baillie and Boller-
slev, 1990; Cheung and Ng, 1990, 1996; Engle et al., 1990; Engle and
Susmel, 1993; Granger et al., 1986; Hamao et al., 1990; King and Wad-
hwani, 1990; King et al., 1994; Lin et al., 1994; Schwert, 1989). Absence
of volatility spillover implies that the major sources of disturbances are
changes in asset- or market-speci,c fundamentals, and one large shock
increases the volatility only in that speci,c asset or market. In contrast,
existence of volatility spillover implies that one large shock increases the
volatilities not only in its own asset or market but also in other assets or
markets as well.
Volatility is often related to the rate of information 1ow (e.g., Ross, 1989).

If information comes in clusters, asset returns or prices may exhibit volatility
even if the market perfectly and instantaneously adjusts to the news. There-
fore, study on volatility spillover can help understand how information is
transmitted across assets and markets. Alternatively, the existence of volatility
spillover may be consistent with the market dynamics which exhibits volatility
persistence due to private information or heterogeneous beliefs (e.g., Admati
and P1eiderer, 1988; Kyle, 1985; Shalen, 1993). Here, whether volatilities
are correlated across markets is important in examining the speed of market
adjustment to new information. It is also hypothesized that the changes in
market volatility are related to the volatilities of macroeconomic variables.
In present value models such as those of Shiller (1981a, b), for example,
changes in the volatility of either future cash 1ows or discount rates cause
changes in the volatility of stock returns. Such a macroeconomic hypothesis
can be checked by testing volatility spillover.
Nearly all the existing empirical studies on volatility spillover use tech-

niques much like a Granger (1969)-type test, namely by regressing the squared
residual of one variable on the squared residuals from its own lagged and
other lagged variables in the framework of multivariate GARCH models.
Cheung and Ng (1996) (see also Cheung and Ng, 1990) recently proposed
a new test for volatility spillover using the sample cross-correlation function
between two squared residuals standardized by their conditional variance es-
timators respectively. Speci,cally, Cheung and Ng (1996) test is based on
the sum of ,nitely many (M say) squared sample cross-correlations, which
has a null asymptotically �2M distribution. This test is relatively simple and
convenient to implement, and can provide valuable information in building
multivariate GARCH models (cf. Cheung and Ng, 1996).
In this paper, we propose a class of new tests for volatility spillover. Essen-

tially we test for causality in variance in the sense of Granger (1969, 1980),
who introduces the concept of causality in terms of incremental predictive
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ability of one time series for another, as opposed to the more conventional
de,nition of cause and eGect. Our tests are a properly standardized version
of a weighted sum of squared sample cross-correlations between two squared
standardized residuals, and have a null asymptotic N(0; 1) distribution. We
do not assume any speci,c innovation distribution (e.g., normality), and the
tests apply to time series that exhibit conditional heteroskedasticity and may
have in,nite unconditional variances. We permit M , the number of the used
sample cross-correlations, to increase with the sample size T (say). In fact,
all T − 1 sample cross-correlations can be used. This enhances good power
against the alternatives with slowly decaying cross-correlations. For such al-
ternatives, the cross-correlation at each lag may be small but their joint eGect
is substantial. We also introduce a 1exible weighting scheme for the sample
cross-correlation at each lag. Typically, larger weights are given to lower or-
der lags. In contrast, Cheung and Ng’s (1996) test gives uniform weighting to
each lag. Non-uniform weighting is expected to give better power against the
alternatives whose cross-correlations decay to zero as the lag order increases.
Such alternatives often arise in practice, because economic agents normally
discount past information. We note that the idea of using non-uniform weight-
ing can also be found in Engle (1982), who uses linearly declining weighting
to improve the power of his popular Lagrange Multiplier (LM) test for ARCH
eGects.
We apply our tests to study volatility spillover between two weekly nomi-

nal U.S. dollar exchange rates—Deutschemark and Japanese yen. It is found
that there exists strong simultaneous volatility interaction between them. Also
a change in past Deutschemark volatility Granger-causes a change in current
Japanese yen volatility, but a change in past Japanese yen volatility does
not Granger-cause a change in current Deutschemark volatility. These ,nd-
ings diGer somewhat from such studies as Baillie and Bollerslev (1990), who
,nd no volatility spillover between these two exchange rates recorded on an
hourly basis.
We state hypotheses of interest in Section 2, and introduce the test statistics

in Section 3. In Section 4, we derive the null asymptotic distribution of the
test statistics and discuss their asymptotic power property under a general
class of alternatives. Section 5 reports a simulation study comparing the new
tests with Cheung and Ng (1996) test. In Section 6, we apply the tests
to study spillover between Deushemark and Japanese yen. The last section
provides conclusions and directions for further research. All the proofs are
collected in the appendix. Throughout the paper, all convergencies, unless
indicated, are taken as the sample size T→∞.
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2. Hypotheses of interest

In modeling two strictly stationary time series {Y1t ; Y2t}∞t=−∞, one may
be interested in their cross-dependence patterns, especially various Granger
causalities (cf. Granger, 1969, 1980). In this paper, we focus on Granger
causalities between time-varying conditional variances of Y1t and Y2t , whose
unconditional variances may not exist. To state the hypothesis, it may be help-
ful to brie1y review the concept of causality introduced by Granger (1969,
1980). Let Iit ; i = 1; 2; be the information set of time series {Yit} available
at period t, and let It = (I1t ; I2t). As de,ned in Granger (1980), Y2t is said to
Granger-cause Y1t with respect to It−1 if

Pr(Y1t |I1t−1) �= Pr(Y1t |It−1): (1)

Granger (1980) points out that (1) is too general to be operational. 1 In prac-
tice, a less general but more easily testable de,nition is that Y2t Granger-causes
Y1t in mean with respect to It−1 if

E(Y1t |I1t−1) �= E(Y1t |It−1) ≡ �01t : (2)

Granger (1969) proposed a convenient regression-based test for (2), assuming
conditional homoskedasticity for both Y1t and Y2t . 2

As introduced in Granger et al. (1986, p. 2), it is also natural to de,ne
the “causality in variance” hypotheses as well, which can be stated as

H0: E{(Y1t − �01t)2|I1t−1}= E{(Y1t − �01t)2|It−1} ≡ Var(Y1t |It−1) (3)

versus

HA: E{(Y1t − �01t)2|I1t−1} �= Var(Y1t |It−1): (4)

Note that E{(Y1t − �01t)2|I1t−1} �= Var(Y1t |I1t−1) because �01t �= E(Y1t |I1t−1) in
general, but we can write H0 vs. HA equivalently as

H0: E{Var(Y1t |It−1)|I1t−1}= Var(Y1t |It−1)

vs.

HA: E{Var(Y1t |It−1)|I1t−1} �= Var(Y1t |It−1):

We say that Y2t does not Granger-cause Y1t in variance with respect to It−1

if H0 holds, and Y2t Granger-causes Y1t in variance with respect to It−1 if HA
holds. Feedback in variance occurs if Y1t Granger-causes Y2t in variance with

1 In Section 7 below, we discuss a plausible approach to testing the general causality (1).
2 Although we focus on testing causality in variance, our approach also immediately delivers

tests for causality in mean in the presence of GARCH eGects, where the unconditional variances
of the time series may not exist. For further details, see the discussion at the end of Section 4.
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respect to It−1 and Y2t Granger-causes Y1t in variance with respect to It−1.
There exists simultaneous causality in variance if

E{(Y1t − �01t)2|It−1} �= E{(Y1t − �01t)2|I1t−1; I2t}: (5)

Note that causality in mean, if any, has been ,ltered out in de,ning H0.
This ensures that existence of causality in mean will not aGect causality in
variance.
Clearly, no causality in mean and variance does not necessarily imply

no general causality, but if causation is found in mean or variance, then
the general causation (1) has been found. From the econometric perspective,
detection of causality in variance is particularly important when the test for
causality in mean fails to reject the null hypothesis, because it is possible
that the general causality (1) exists but there is no causality in mean. In
,nance and macroeconomics, causality in variance has its own interest, as it
is directly related to volatility spillover across diGerent assets or markets.

3. Test statistics and procedures

We now propose a test for H0. Consider the disturbance processes

�it = Yit − �0it ; i = 1; 2; (6)

where �0it = E(Yit |It−1). To test H0, we specify the following processes

�it = �it(h0it)
1=2; (7)

where h0it is a positive time-varying measurable function with respect to Iit−1,
and {�it} is an innovation process with

E(�it |Iit−1) = 0 a:s:; E(�2it |Iit−1) = 1 a:s: (8)

By construction, E(�it |Iit−1) = 0 a.s. and E(�2it |Iit−1) = h0it is the univariate
conditional variance of �2it . Moreover, because E(�it |It−1) = 0 a.s., it follows
that

E(�it |It−1) = 0 a:s: (9)

This implies that neither �2t Granger-causes �1t in mean with respect to It−1

nor �1t Granger-causes �2t in mean with respect to It−1.
Now, hypotheses H0 vs. HA can be equivalently written as

H0: Var(�1t |I1t−1) = Var(�1t |It−1) (10)

vs.

HA: Var(�1t |I1t−1) �= Var(�1t |It−1): (11)

Thus, we can test H0 by checking if �2t Granger-causes �1t in variance with
respect to It−1.
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The squared innovations {�2it} are unobservable, but they can be estimated
consistently using squared residuals standardized by their conditional variance
estimators, respectively. Throughout, we assume that the conditional mean is
parameterized as

�0it = �it(b
0
i ); i = 1; 2; (12)

for some ,nite dimensional parameter vector b0i , and the conditional variance
h0it follows a GARCH(p; q) process (cf. Bollerslev, 1986)

h0it =!
0
i +

q∑
j=1
�0ij�

2
it−j +

p∑
j=1
�0ijh

0
it−j; (13)

where !0
i ¿0, and �0ij and �0ij satisfy appropriate conditions to ensure the

strict positivity of h0it (cf. Drost and Nijman, 1993; Nelson and Cao, 1992). 3

Given the data {Yt}Tt=1, where Yt = (Y1t ; Y2t)′, let �̂i = (b̂
′
i ; !̂i; �̂

′
i ; �̂

′
i)

′ be any√
T -consistent estimator for �0i = (b0

′
i ; !

0
i ; �

0′
i; �

0′
i )

′; where �0i = (�01i ; : : : ; �
0
qi)

′

and �0i = (�01i ; : : : ; �
0
pi)

′. For example, we permit (but do not require) �̂i to
be a quasi-maximum likelihood estimator (QMLE) of �0i (e.g., Bollerslev
and Wooldridge, 1992; Lee and Hansen, 1994; Lumsdaine, 1996). Then the
centered squared standardized residuals can be obtained as

û t ≡ ut(�̂1) = �̂21t =ĥ1t − 1; v̂t ≡ vt(�̂2) = �̂22t =ĥ2t − 1; (14)

where �̂it ≡ �it(�̂i); ĥit ≡ hit(�̂i), with
�it(�i) = Yit − �it(bi); (15)

hit(�i) =!i +
q∑
j=1
�ij�2it−j(�i) +

p∑
j=1
�ijhit−j(�i): (16)

Here, �i = (b′i ; !i; �
′
i; �

′
i)

′, the start-up values hit(�i) ≡ h∗it6�¡∞ for −p +
16 t60 and some constant �, and �it(�i) = 0 for −q + 16 t60. Lee and
Hansen (1994) and Lumsdaine (1996) show that the initial condition is
asymptotically negligible for the consistency and asymptotic normality of the
QMLE of �0i for GARCH(1,1) processes. In fact, it also has asymptotically
negligible impact on the limiting distribution of our test statistic, as is shown
in the appendix.

3 We use GARCH processes for simplicity and concreteness. Alternatively, other functional
forms such as Bera and Higgins (1993) NGARCH, Nelson’s (1991) EGARCH, and Sentana’s
(1995) QARCH Models could be used as well. However, it remains open whether the asymp-
totic properties of the proposed test statistics would still be valid under these alternative func-
tional forms.
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Cheung and Ng (1996) recently proposed a test for H0 by using the sample
cross-correlation function between û t and v̂t , which is de,ned as

!̂uv(j) = {Ĉuu(0)Ĉvv(0)}−1=2Ĉuv(j); (17)

where the sample cross-covariance function

Ĉuv(j) =



T−1

T∑
t=j+1
û t v̂t−j; j¿0;

T−1
T∑

t=−j+1
û t+jv̂t ; j¡0;

(18)

and Ĉuu(0)=T−1∑T
t=1 û

2
t and Ĉvv(0)=T

−1∑T
t=1 v̂

2
t . Cheung and Ng’s statistic

is based on the sum of the ,rst M squared cross-correlations

S = T
M∑
j=1
!̂2uv(j); (19)

which is asymptotically �2M under H0. 4 They also proposed a modi,ed test
statistic

S∗ = T
M∑
j=1
!j!̂

2
uv(j); (20)

where !j = T=(T − j) or !j = (T + 2)=(T − j). The introduction of !j gives
better match between the moments of S∗ and �2M , and therefore is expected
to have better sizes in small samples (cf. Ljung and Box, 1978). It does not
aGect the asymptotic power, however.
The key feature of volatility clustering is that a high volatility “today” tends

to be followed by another high volatility “tomorrow”, and a low volatility
“today” tends to be followed by another low volatility “tomorrow”. Recent
past volatility often has greater impact on current volatility than distant past
volatility. In general, this property carries over to volatility spillover between
two assets or markets: the current volatility of an asset or market is more
aGected by the recent volatility of the other asset or market than by the remote
past volatility of that asset or market. Indeed, empirical studies often ,nd that
cross-correlations between ,nancial assets or markets generally decay to zero
as the lag order j increases. Therefore, when a large M is used, the S test
may not be fully eRcient, because it gives equal weighting to each of the M
sample cross-correlations. The same is true of the S∗ test because it has the
same asymptotic power as the S test. For large M , a more eRcient test may
be obtained by giving a larger weight to a lower lag order j. On the other
hand, some ,nancial time series may exhibit strong cross-correlation. Such

4 Cheung and Ng (1996) use the sample mean of �̂2it =ĥit rather than 1 to construct the sample
cross-correlations. In our simulation study, we ,nd that there is virtually no diGerence in both
size and power when either de,nition is used.
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processes can have a long distributed lag such that the cross-correlation at
each lag is small but their joint eGect is substantial. Tests based on a small
number of sample cross-correlations (i.e., a small M) may fail to detect such
alternatives. In such situations, it is desirable to let M grow with T or to
include all T − 1 sample cross-correlations !̂uv(j).
Motivated by these considerations, we suggest a class of new tests based

on a generalized version of Cheung and Ng (1996) statistic, namely,

T
T−1∑
j=1
k2(j=M)!̂2uv(j); (21)

where k(·) is a weighting function and M is a positive integer. Examples of
k(·) include the truncated, Bartlett, Daniell, Parzen, quadratic-spectral (QS)
and Tukey–Hanning kernels:
Truncated:

k(z) =

{
1; |z|61;

0; otherwise;

Bartlett:

k(z) =

{
1− |z|; |z|61;

0; otherwise;

Daniell:

k(z) = sin(&z)=&z; −∞¡z¡∞;
Parzen:

k(z) =




1− 6z2 + 6|z|3; |z|60:5;

2(1− |z|)3; 0:5¡|z|61;
0; otherwise;

QS:

k(z) =
3√

5(&z)2
{sin(&z)=&z − cos(&z)}; −∞¡z¡∞;

Tukey–Hanning:

k(z) =

{
1
2 (1 + cos(&z)); |z|61;

0; otherwise:

See, e.g., Priestley (1981) for details. Here, the truncated, Bartlett, Parzen
and Tukey–Hanning kernels have compact support, i.e., k(z) = 0 for |z|¿1.
For these functions, M is the “lag truncation number”, because the lags of
order j¿M receive zero weight. In contrast, the Daniell and QS kernels have
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unbounded support. For these kernels, all T − 1 sample cross-correlations are
used, and M is no longer a lag truncation number. Except for the truncated
kernel, all of these kernels have the typical shape of giving a larger weight
to a lower lag order j. In contrast, the truncated kernel gives equal weighting
to each of the M sample cross-correlations. Cheung and Ng’s (1996) S test
can thus be viewed as a test based on the truncated kernel. We note that the
weight k2(j=M) is always positive, and diGers fundamentally from the weight
!j for the S∗ test. The asymptotic power of our test depends on k(·), while
!j does not aGect the asymptotic power of the S∗ test. 5

Our test statistic is an appropriately standardized version of (21), namely,

Q1 =

{
T
T−1∑
j=1
k2(j=M)!̂2uv(j)− C1T (k)

}/
{2D1T (k)}1=2; (22)

where

C1T (k) =
T−1∑
j=1

(1− j=T )k2(j=M);

D1T (k) =
T−1∑
j=1

(1− j=T ){1− (j + 1)=T}k4(j=M):

Both C1T (k) and D1T (k) are approximately the mean and variance of (21).
The factors (1−j=T ) and (1−j=T ){1−(j+1)=T} are ,nite sample corrections.
They are asymptotically negligible, but they give better matches to the mean
and variance of (21), respectively.
Alternatively, we can also consider a modi,ed version

Q∗
1 =

{
T
T−1∑
j=1

(1− j=T )−1k2(j=M)!̂2uv(j)− C∗
1T (k)

}/
{2D∗

1T (k)}1=2;

(23)

where

C∗
1T (k) =

T−1∑
j=1
k2(j=M);

D∗
1T (k) =

T−1∑
j=1

{1− (T − j)−1}k4(j=M):

It can be shown that Q1 and Q∗
1 are asymptotically equivalent. The weight

(1− j=T )−1 is the same as that for S∗. This gives better match between the

5 In addition to the introduction of weighting, our framework also diGers from that of Che-
ung and Ng (1996) in some other aspects. For example, Cheung and Ng consider univariate
conditional mean speci,cations for Y1t and Y2t , respectively. In contrast, we consider a jointly
bivariate conditional mean speci,cation for (Y1t ; Y2t). This ensures that causality in mean, if any,
is ,ltered out so that it will have no impact on causality in variance. Moreover, we explicitly
provide regularity conditions under which our results hold (see Section 4 for details).
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moments of {T=(1− j=T )}!̂2uv(j) and �21 in ,nite samples. While S∗ is always
larger than S, Q∗

1 need not be larger than Q1, due to the standardization by
C1T (k) and D1T (k). Our simulation shows that Q1 and Q∗

1 perform almost
the same, while S∗ has better sizes than S in small samples. This suggests
that the correction by factor (1− j=T )−1 is not necessary for Q1 when it has
been properly standardized by C1T (k) and D1T (k).
The constants C1T (k), D1T (k), C∗

1T (k) and D∗
1T (k) are readily computable

given M and k(·). As M→∞, we have M−1C1T (k)→
∫∞
0 k

2(z) dz and
M−1D1T (k)→

∫∞
0 k

4(z) dz. Consequently, C1T (k) (C∗
1T (k)) and D1T (k)

(D∗
1T (k)) can be replaced by M

∫∞
0 k

2(z) dz and M
∫∞
0 k

4(z) dz, respectively
when M is large.
Under appropriate regularity conditions (see Section 4), it can be shown

that under H0,

Q1 →N(0; 1) in distribution:

On the other hand, Q1 diverges to positive in,nity in probability as T→∞
under a general class of alternatives. This implies that asymptotically, neg-
ative values of Q1 occur only under H0. Therefore, Q1 is a one-sided test;
upper-tailed N(0; 1) critical values should be used. For example, the asymp-
totic critical value at the 5% level is 1.645.
When the truncated kernel is used, our approach delivers a test statistic

Q1TRUN = (S −M)=(2M)1=2: (24)

This is a standardized version of Cheung and Ng (1996) S test. Intuitively,
S is a �2M test. When the degree of freedom M is large, we can transform
the S test into a N(0; 1) test by subtracting the mean M and dividing by
standard deviation (2M)1=2. Similarly, although Cheung and Ng’s S∗ test uses
a weighting function !j to improve the size of the S test in ,nite samples,
the weight !j does not aGect its asymptotic power. Consequently, Q1TRUN is
also asymptotically equivalent to a standardized version of S∗, namely,

Q1TRUN − (S∗ −M)=(2M)1=2 →p0: (25)

Indeed, our simulation below shows that Q1TRUN, S and S∗ have similar
power.
In fact, the truncated kernel-based test is also asymptotically equivalent to

a Granger (1969)-type regression-based test for H0. To see this, consider the
regression model

û t =
M∑
j=1
)jv̂t−j + wt: (26)

Intuitively, under H0, the v̂t−j should have no signi,cant explanatory power
for û t , so the coeRcients )j for 16j6M should be jointly equal to 0.
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If at least one coeRcient is signi,cantly diGerent from zero, then there is
evidence that v̂t Granger-causes û t , with respect to It−1. Thus, one can test
H0 by testing whether the coeRcients )j are jointly equal to zero. Granger
(1980) suggests a test for causality in mean based on a regression similar to
(26), with a ,xed but arbitrarily large M (see also Pierce and Haugh, 1977).
To ensure that the test has power against a large class of alternatives, we can
let M grow with the sample size T properly. This delivers a R2-based test
statistic

Q1REG = (TR2 −M)=(2M)1=2; (27)

where R2 is the centered squared multi-correlation coeRcient from the regres-
sion (26). This is essentially a generalized version of the Granger (1969)-type
test for H0. It can be shown that Q1REG is asymptotically equivalent to
Q1TRUN under proper conditions. In other words, the Granger-type causality
test is asymptotically equivalent to a uniform weighting-based test. There-
fore, when a large M is used, we expect that Q1REG will be less powerful
than non-uniform weighting-based tests against the alternatives with decaying
cross-correlations.
We now summarize our test procedures:

(1) Estimate univariate GARCH(p; q) models for {�̂1t} and {�̂2t} respec-
tively, by the QMLE method, and save the conditional variance estima-
tors {ĥ1t ; ĥ2t}.

(2) Compute the sample cross-correlation function !̂uv(j) between the cen-
tered squared standardized residuals {û t=�̂21t =ĥ1t−1} and {v̂t=�̂22t =ĥ2t−1}.

(3) Choose a weighting function k(·) and an integer M , and compute C1T (k)
and D1T (k). For the choice of k(·) and M , see discussion below.

(4) Compute the test statistic Q1 and compare it to the upper-tailed critical
value of N(0; 1) at an appropriate level. If Q1 is larger than the critical
value, then the null hypothesis H0 is rejected. Otherwise, H0 is not
rejected.

In our simulation below, we study the sensitivity of the size and power to
the choice of k(·) and M . It is found that some commonly used non-uniform
kernels behave rather similarly in terms of size and power, and they have
better power than uniform weighting in most cases. Therefore, the choice of
k(·), as long as it is non-uniform (e.g., the Daniell kernel), has little impact
on the size and power. The choice of M also has little impact on the size, but
it has some impact on power (although not substantially). In practice, one
may try several diGerent M or use some simple “rule-of-thumb”. Because
non-uniform weighting discounts higher order lags, we expect that the use
of non-uniform weighting will alleviate the loss of power due to choosing
too large a M . This is con,rmed in the simulation study below. Ideally, M
should be chosen to maximize the power, which clearly depends on the data
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generating process. One may use some data-driven methods to choose M .
This is beyond the scope of this paper and has to be left to other work. 6

It should be emphasized that our formal results in Section 4 are proved
only under a simple regression model with GARCH(1,1) errors. These results
might still be valid under a more general conditional mean model with higher
order GARCH errors, but this conjecture remains to be veri,ed. As asymptotic
analysis is extremely complicated, we use the simulation method to study this
conjecture in Section 5. We also emphasize that throughout the paper, we
assume correct speci,cation of the underlying conditional volatility processes,
which is crucial for Q1 and all the other tests based on !̂uv(j).

4. Asymptotic theory

We now provide regularity conditions to support the heuristics given in
Section 3. Because GARCH processes are nonlinear functions of the under-
lying innovations and they may have in,nite unconditional variances, asymp-
totic analysis involved is rather demanding. Following Lee and Hansen (1994)
and Lumsdaine (1996), we consider only a simple data generating process
with GARCH(1,1) errors:

Yit = b0i + �it ; i = 1; 2; t = 1; : : : ; T; (28)

�it = �it(h0it)
1=2; (29)

h0it =!
0
i + �

0
i �

2
it−1 + �

0
i h

0
it−1: (30)

The asymptotic properties of the QMLE for this model have been studied by
Lee and Hansen (1994) and Lumsdaine (1996).
We ,rst provide some regularity conditions under the model described by

(28)–(30).

Assumption A.1. For i = 1; 2, {�it} is i.i.d. with E(�it) = 0, E(�2it) = 1 and
E(�8it)¡∞.

Assumption A.2. E{ln(�0i + �0i �2it)}¡0, i = 1; 2.

6 From the viewpoint of frequency domain, the statistic (21) can be viewed as the quadratic
form 2&

∫ &
−& |Ĥ uv(!)|2 d!, where Ĥ uv(!) = (2&)−1∑T−1

j=1 k(j=M)!̂uv(j)e
−ij! is a kernel esti-

mator for the “one-sided” coherency Huv(!) ≡ (2&)−1∑∞
j=1 !uv(j)e

−ij!, with !uv(j) being the
cross-correlation function between u0t = �21t − 1 and v0t = �22t − 1. One may choose M via some
data-driven methods that deliver a reasonable coherency estimator. Such a choice, of course,
does not necessarily maximize the power of Q1.
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Assumption A.3.
√
T (�̂i − �0i ) = OP(1), where �̂i = (b̂i; !̂i; �̂i; �̂i)

′, �0i = (b0i ,
!0
i ; �

0
i ; �

0
i )

′, and 0¡!0
i ¡∞; 06�0i ¡∞; 06�0i ¡1.

Assumption A.4. k :R→ [−1; 1] is symmetric about 0; and is continuous at
0 and at all points except for a ,nite number of points, with k(0) = 1 and∫∞
0 k

2(z) dz¡∞.

Assumption A.5. M ≡ M (T ) is such that M−1 +M=T→ 0 as T→∞.

Like Cheung and Ng (1996) test, we do not assume any speci,c distribu-
tion for �1t and �2t . Assumption A:1 includes N(0; 1), the generalized error
distribution (e.g., Nelson, 1991) and the t-distribution with degrees of free-
dom larger than 8. The i.i.d. assumption on {�it} corresponds to a “Strong
GARCH” process (cf. Drost and Nijman, 1993). Estimation and inference of
GARCH models is frequently done in practice under this assumption. In the
present context, the i.i.d. assumption on {�it} ensures the condition (8) that
E(�it |Iit−1)=0 a.s. and E(�2it |Iit−1)=1 a.s., and simpli,es much the asymptotic
analysis. It seems possible to relax this condition so that {�it} is a martingale
diGerence sequence, but we do not pursue this possibility here.
The GARCH(1,1) model has been the workhorse in the literature, with the

largest number of applications. It is found that the GARCH(1,1) model is
quite robust and does most of the work for ,nancial time series. Assump-
tion A:2, introduced ,rst by Nelson (1990), ensures that the GARCH(1,1)
process is strictly stationary and ergodic. As pointed out by Nelson (1990),
�0i +�

0
i 61 implies Assumption A:2 but not vice versa. Thus, Assumption A:2

permits IGARCH (1,1) processes (i.e., �0i + �
0
i =1; cf. Engle and Bollerslev,

1986) and mildly explosive GARCH (1,1) processes (i.e., �0i +�
0
i ¿1). These

processes are not covariance-stationary, since they have in,nite unconditional
variances. In Assumption A:3, we allow for any

√
T -consistent estimator �̂i

for �0i . In particular, we permit (but do not require) �̂i to be a QMLE. Lee
and Hansen (1994) and Lumsdaine (1996) show that under appropriate condi-
tions, a locally QMLE for �0i exists, and is consistent and

√
T -asymptotically

normal, thus satisfying Assumption A:3. 7 Under Assumption A:3, the sam-
pling eGects of �̂i have negligible impact on the limiting distribution of Q1,
as is shown in the appendix. Consequently, we can form our test statistic as

if the true parameter �0i were known and were equal to its estimate �̂
0
i .

Assumption A:4 is a standard condition on the kernel k(·). The examples
given in Section 3 all satisfy this assumption. Assumption A:5 is rather weak,

7 In fact, if �̂i is a QMLE, Assumption A:3 becomes redundant because it will be implied
by Assumptions A:1 and A:2 under the model described by (28)–(30). Cf. Lee and Hansen
(1994).
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requiring only that M grow to in,nity as T increases, but at a slower rate
than T .
We ,rst derive the null asymptotic distribution of Q1.

Theorem 1. Suppose Assumptions A:1–A:5 hold under the model described
by (28)–(30). If {�1t} and {�2t} are mutually independent, then Q1 →N(0; 1)
in distribution.

There exists a gap between H0 :Var(�1t |I1t−1)=Var(�1t |It−1) and indepen-
dence between {�1t} and {�2t}. The latter implies the former but the converse
is not true. There exist processes for which {�1t} and {�2t} are not mutu-
ally independent but H0 holds. The assumed independence between {�1t} and
{�2t} in Theorem 1 renders the asymptotic analysis much simpler. It is pos-
sible to relax this assumption and impose conditions closer to H0, but this
would inevitably complicate the asymptotic analysis. 8

Next, we consider the asymptotic behavior of Q1 under a general alterna-
tive. Put

u0t = �
2
1t − 1 and v0t = �

2
2t − 1:

We let !uv(j) denote the cross-correlation function between {u0t } and {v0t };
namely,

!uv(j) = Cov(u0t ; v
0
t−j); j = 0;±1;±2; : : : :

Also, let 0uvuv(i; j; l) be the fourth order cumulant of the time series
{u0t ; v0t−i ; u0t−j; v0t−l}; namely,

0uvuv(i; j; l) = E(u0t v
0
t−iu

0
t−jv

0
t−l)− E(u t Vvt−iu t−j Vvt−l);

where { Vu t; Vvt} is a bivariate zero-mean Gaussian process with the same vari-
ance and covariance structure as {u0t ; v0t }.

Theorem 2. Suppose Assumptions A:1–A:5 hold under the model described
by (28)–(30), and {�1t ; �2t} is an eighth order stationary bivariate process
with

∑∞
j=1 !

2
uv(j)¡∞ and

∑∞
i=−∞

∑∞
j=−∞

∑∞
l=−∞ |0uvuv(i; j; l)|¡∞. Then

M 1=2

T
Q1 →

∞∑
j=1
!2uv(j)

/[
2
∫ ∞

0
k4(z) dz

]1=2
in probability:

8 We conjecture that Q1 →N(0; 1) in distribution under Assumptions A:1–A:5, and (a)
E(�21t |It−1) = 1 a.s. and (b) E(�41t |It−1) = E(�41t) a.s., where (a) is much closer to H0 than
independence between {�1t} and {�2t}, and (b) is a conditional homokurtosis condition. If (b)
does not hold, then Q1 has to be modi,ed to be heterokurtosis consistent. The proofs under
these general conditions would be much more involved.
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The fourth order cumulant condition holds when {u0t ; v0t } is a bivariate linear
process with absolutely summable coeRcients and i.i.d. innovations whose
fourth order moments are ,nite (cf. Hannan, 1970, p. 211). It also holds
under a proper mixing condition (cf. Andrews, 1991, Lemma 1). We do
not impose more primitive conditions here because the cumulant condition
and

∑∞
j=1 !

2
uv(j)¡∞ allow for some strongly cross-dependent alternatives

whose cross-correlation !uv(j) decays to zero so slowly that !uv(j) is not be
absolutely summable.
Theorem 2 implies that Q1 has asymptotic unit power whenever !uv(j) �=

0 for some j¿0. In other words, Q1 is able to detect any linear volatility
spillover from Y2t to Y1t with respect to It−1 if the sample size T is suRciently
large. It should be noted, though, that Q1 has no power against the alternatives
with zero cross-correlations between u0t and v0t−j for all j¿0 (i.e., !uv(j) =
0 for all j¿0). Therefore, Q1 may have no power against some types of
nonlinear volatility spillover from Y2t to Y1t with respect to It−1.
In addition to Q1, test statistics for other causality hypotheses can be ob-

tained immediately. For example, when no prior information about the direc-
tion of causalities is available, it is more appropriate to test the bidirectional
hypothesis that neither Y2t Granger-causes Y1t in variance with respect to
(I1t ; I2t−1) nor Y1t Granger-causes Y2t in variance with respect to (I1t−1; I2t).
For this, an appropriate test statistic is

Q2 =

{
T
T−1∑
j=1−T

k2(j=M)!̂2uv(j)− C2T (k)

}/
{2D2T (k)}1=2; (31)

where

C2T (k) =
T−1∑
j=1−T

(1− | j|=T )k2(j=M);

D2T (k) =
T−1∑
j=1−T

(1− | j|=T ){1− (| j|+ 1)=T}k4(j=M):

The Q2 test has a null asymptotic N(0; 1) distribution, and has asymptotic
unit power whenever

∑∞
j=−∞ !

2
uv(j)¿0. Like Q1, upper-tailed N(0; 1) critical

values should be used for Q2.
Our approach can also be extended immediately to test causality in mean,

by using the sample cross-correlation function between standardized residuals

�̂1t =ĥ
1=2
1t and �̂2t =ĥ

1=2
2t .

9 This substantially extends Hong’s (1996) test for inde-
pendence between two covariance-stationary time series with homoskedastic
errors whose fourth moments are ,nite. Such an extension is useful for

9 To test causality in mean, the eighth moment condition E(�8it)¡∞ in Assumption A:1 can
be relaxed to the fourth moment condition E(�4it)¡∞.
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,nancial and macroeconomic time series, which often exhibit conditional het-
eroskedasticity and may have in,nite unconditional variances.

5. Monte Carlo evidence

To investigate the ,nite sample performance of the proposed tests, we
consider the following data generating process:

Yit = X ′
itb

0
i + �it ; i = 1; 2; t = 1; : : : ; T;

�it = �it(h0it)
1=2;

where Xit = (1; mit)′, mit = 0:8mit−1 + wit , wit ∼ NID(0,4), b0i = (1; 1)′, and
�it ∼ NID(0,1). Although our theory in Section 4 only allows for a constant
regressor, we include an exogenous time series variable mit to examine its
eGect in ,nite samples. We ,rst consider the following conditional variance
processes

h0it =!
0
i + �

0
i �

2
it−1 + �

0
i h

0
it−1 + 4ij�

2
jt−d + )ijh

0
jt−d; d¿0; i �= j; i; j = 1; 2;

with six parameter combinations, respectively:

NULL1(A):

{
(�01; �

0
1; 412; )12) = (0:2; 0:5; 0; 0);

(�02; �
0
2; 421; )21) = (0:2; 0:5; 0; 0);

NULL1(B):

{
(�01; �

0
1; 412; )12) = (0:2; 0:8; 0; 0);

(�02; �
0
2; 421; )21) = (0:2; 0:8; 0; 0);

ALTER1(A):

{
(�01; �

0
1; 412; )12) = (0:2; 0:5; 0:2; 0:5);

(�02; �
0
2; 421; )21) = (0:2; 0:5; 0; 0); d= 1;

ALTER1(B) :

{
(�01; �

0
1; 412; )12) = (0:2; 0:5; 0:2; 0:5);

(�02; �
0
2; 421; )21) = (0:2; 0:5; 0; 0); d= 4;

ALTER2(A):

{
(�01; �

0
1; 412; )12) = (0:2; 0:5; 0:1; 0:19);

(�02; �
0
2; 421; )21) = (0:2; 0:5; 0:1; 0:19); d= 1;

ALTER2(B):

{
(�01; �

0
1; 412; )12) = (0:2; 0:5; 0:1; 0:19);

(�02; �
0
2; 421; )21) = (0:2; 0:5; 0:1; 0:19); d= 4:

There is no volatility spillover between Y1t and Y2t under NULL1(A,B). Note
that h0it is an IGARCH(1,1) process under NULL1(B). Under ALTER1(A,B),
there exists volatility spillover from Y2t to Y1t with respect to It−1 but not from
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Y1t to Y2t , with respect to It−1. Under ALTER2(A,B), there exists volatil-
ity spillover both from Y1t to Y2t with respect to It−1 and from Y2t to Y1t
with respect to It−1. There is a one-period lag in volatility spillover under
ALTER1(A) and ALTER2(A), and there is a four-period lag in volatility
spillover under ALTER1(B) and ALTER2(B).
To investigate the conjecture that the proposed tests apply to higher order

GARCH processes, we also consider the following GARCH(1,4) processes.

h0it =!
0
i +

4∑
j=1
�0ij�

2
it−j + �

0
i h

0
it−1; i = 1; 2;

with two parameter combinations, respectively:

NULL2(A):

{
(�011; �

0
12; �

0
13; �

0
14; �

0
1) = (0:1; 0:1; 0:1; 0:1; 0:3);

(�021; �
0
22; �

0
23; �

0
24; �

0
2) = (0:1; 0:1; 0:1; 0:1; 0:3);

NULL2(B):

{
(�011; �

0
12; �

0
13; �

0
14; �

0
1) = (0:1; 0:1; 0:1; 0:1; 0:6);

(�021; �
0
22; �

0
23; �

0
24; �

0
2) = (0:1; 0:1; 0:1; 0:1; 0:6);

where h0it is an IGARCH(1,4) process under NULL2(B).
For all the cases, we set !0

i = 1; simulation shows that the test statistics
are robust to the choice of !0

i . Three sample sizes, T = 300; 500; 800, are
considered. For each T , we ,rst generate T + 1000 observations using the
GAUSS random number generator on a personal computer and then discard
the ,rst 1000 to reduce the possible eGect of the start-up value h∗i0. We set
h∗i0=1=(1−�0i −�0i ) for NULL1(A) and ALTER1-2, set h∗i0=1=(1−∑4

j=1 �
0
ij−

�0i ) for NULL2(A), and set h∗i0 = 1000 for NULL1(B) and NULL2(B). 10

We estimate an univariate GARCH(1,1) model for h0it under NULL1 and
ALTER1-2 respectively, and an univariate GARCH(1,4) model for h0it under
NULL2, using Berndt et al. (1974, BHHH) algorithm. The resulting squared
residuals standardized by their conditional variance estimators are then used to
construct the tests. We consider test statistics Q1 in (22) and Q2 in (31). The
Q1 test is more suitable for testing ALTER1, and the Q2 test is more suitable
for testing ALTER2. We also compute Q∗

1 and Q∗
2 , the modi,ed versions of

Q1 and Q2. Throughout, we conduct 1000 iterations for each experiment.
To examine the eGect of the choice of k(·) on the size and power, we use

four kernels: the Bartlett, Daniell, QS and truncated kernels (see Section 3
for their expressions). The ,rst three kernels are non-uniform. To examine
the eGect of the choice of M , we consider M = 10; 20 and 30, for each T .

10 More ideally, h∗i0 can be drawn from the underlying strictly stationary distribution of the
conditional variance process. Nevertheless, our analysis shows that the choice of start-up values
has negligible impact on the limit distribution of the test statistics, as is con,rmed in the
simulation study.
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Table 1
Size at the 10% and 5% levels under GARCH(1,1) processesa

NULL1(A) NULL1(B)

M 10 20 30 10 20 30
10% 5% 10% 5% 10% 5% 10% 5% 10% 5% 10% 5%

Q1 BAR 10.3 6.9 10.7 6.4 11.4 6.8 10.3 7.2 10.1 6.4 11.3 6.3
DAN 11.2 7.4 11.3 6.5 11.6 6.8 10.8 7.4 10.8 6.7 10.7 6.9
QS 11.3 7.3 11.3 6.6 11.6 6.9 10.7 7.4 10.8 6.5 10.9 6.8

Q∗
1 BAR 10.4 6.9 10.7 6.4 11.4 6.9 10.3 7.1 10.0 6.4 11.1 6.2

DAN 11.1 7.4 11.3 6.4 11.5 6.6 10.8 7.4 10.8 6.7 10.7 7.0
QS 11.3 7.2 11.4 6.7 11.5 7.0 10.7 7.4 10.8 6.5 10.9 6.9

Q1 TRUN 10.5 6.1 10.8 6.6 9.4 5.5 10.4 6.2 10.1 6.7 10.1 6.4
S1 9.7 4.6 9.9 5.5 9.1 4.5 9.7 4.8 9.6 5.4 9.2 5.3
S∗1 10.2 5.1 11.2 6.1 11.0 6.0 9.9 5.2 10.7 6.1 11.5 6.7

Q2 BAR 10.5 7.2 11.2 7.3 11.3 7.4 10.8 7.3 11.7 7.7 11.6 7.2
DAN 10.7 7.1 10.5 7.0 12.3 6.4 11.1 7.6 11.5 7.4 11.4 6.6
QS 11.0 6.9 10.7 7.1 12.7 6.5 11.2 7.7 11.5 7.3 11.7 6.8

Q∗
2 BAR 10.4 7.1 11.2 7.2 11.3 7.2 10.8 7.2 11.4 6.9 10.3 6.9

DAN 10.7 7.1 10.6 7.0 12.5 6.5 10.8 7.4 10.2 6.3 9.1 6.0
QS 10.9 6.9 10.5 7.1 12.9 6.5 10.7 7.6 10.8 6.8 10.0 6.4

Q2 TRUN 11.2 6.7 10.6 5.7 8.0 4.7 10.9 6.6 10.4 6.2 8.4 4.7
S2 10.5 5.2 10.0 4.7 7.4 4.3 9.8 5.3 10.0 5.5 8.3 4.2
S∗2 11.3 6.0 12.0 5.7 10.5 5.8 10.9 5.8 11.6 6.3 10.2 5.2

aNULL1(A): Yi = 1 + Xit + �it ; �it = �ith
1=2
it ; hit = 1 + 0:2�2it−1 + 0:5hit−1; NULL1(B): Yi =

1+Xit + �it ; �it = �ith
1=2
it ; hit =1+0:2�2it−1 + 0:8hit−1; The sample size T =500; 1000 iterations;

BAR; DAN; QS; TRUN = Bartlett, Daniell, Quadratic-spectral, truncated kernels.

We compare our tests with corresponding Cheung and Ng (1996) test
statistics

S1 = T
M∑
j=1
!̂2uv(j); (32)

S2 = T
M∑

j=−M
!̂2uv(j): (33)

Under H0, S1 and S2 are asymptotically distributed as �2M and �22M+1, re-
spectively. We also compute S∗1 and S∗2 , the modi,ed versions of S1 and S2,
respectively.
To save space, we only report the results for T =500 in detail.

Tables 1 and 2 report the size under NULL1-2 at the 10% and 5% lev-
els. Overall, Q1 and Q2 perform well at the 10% level, but tend to overreject
a little at the 5% level. The non-uniform kernels perform similarly, and for
each kernel, the choice of M has little impact on the size. For each i, Qi
and Q∗

i perform almost the same, while Si and S∗i perform a little diGerently.
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Table 2
Size at the 10% and 5% level under GARCH(1,4) processesa

NULL2(A) NULL2(B)

M 10 20 30 10 20 30
10% 5% 10% 5% 10% 5% 10% 5% 10% 5% 10% 5%

Q1 BAR 11.2 6.4 11.3 6.6 11.2 6.6 11.0 7.3 10.9 6.5 11.7 7.4
DAN 11.6 6.7 11.1 7.2 11.2 6.8 11.1 7.5 11.2 7.2 11.5 7.9
QS 11.5 6.4 11.2 7.1 11.3 6.9 11.3 7.4 11.4 7.0 11.3 7.9

Q∗
1 BAR 11.2 6.4 11.3 6.6 11.1 6.7 11.0 7.2 10.8 6.6 12.0 7.4

DAN 11.5 6.7 11.2 7.2 11.2 6.8 11.1 7.5 11.1 7.2 11.6 7.8
QS 11.6 6.7 11.1 7.2 11.5 6.8 11.3 7.5 11.2 6.9 11.3 7.8

Q1 TRUN 11.0 6.7 10.3 6.5 8.1 4.8 10.3 6.3 11.3 5.9 9.5 5.4
S1 10.5 5.2 9.7 4.6 8.1 4.0 9.7 5.4 10.8 4.5 9.2 4.2
S∗1 10.8 5.5 10.8 5.8 10.4 5.3 10.0 5.5 11.7 5.4 10.8 5.9

Q2 BAR 10.9 6.7 11.6 6.8 10.4 6.6 11.0 7.5 11.2 7.6 11.3 6.9
DAN 11.0 7.4 10.6 7.4 11.3 6.8 10.9 7.8 10.9 7.2 11.3 6.4
QS 10.9 7.3 10.6 7.2 11.6 6.7 11.2 7.9 10.8 7.0 11.5 6.4

Q∗
2 BAR 10.8 6.6 11.6 6.8 10.6 6.7 10.9 7.5 11.2 7.6 11.3 6.8

DAN 11.0 7.4 10.6 7.3 11.4 6.8 10.8 7.8 10.8 7.1 11.6 6.4
QS 10.9 7.3 10.7 7.0 11.4 6.7 11.2 7.9 10.7 7.0 11.5 6.4

Q2 TRUN 11.3 6.1 9.5 4.5 7.2 4.6 10.3 5.9 10.1 4.4 7.7 4.4
S2 10.6 5.2 8.5 4.0 7.0 3.7 9.8 5.0 9.6 3.8 7.4 3.9
S∗2 11.4 5.4 11.4 4.5 10.4 5.3 10.2 5.2 11.0 4.5 9.8 5.3

aNULL2(A): Yi=1+Xit + �it ; �it = �ith
1=2
it ; hit =1+0:1�2it−1 +0:1�2it−2 +0:1�2it−3 +0:1�2it−4 +

0:3hit−1; NULL2(B): Yi = 1 + Xit + �it ; �it = �ith
1=2
it ; hit = 1 + 0:1�2it−1 + 0:1�2it−2 + 0:1�2it−3 +

0:1�2it−4 +0:6hit−1; The sample size T =500; 1000 iterations; BAR; DAN; QS; TRUN=small
Bartlett, Daniell, Quadratic-spectral, truncated kernels.

This suggests that the correction by factor (1−j=T )−1 is not necessary for Q1

when it has been properly standardized by C1T (k) and D1T (k). The S∗i test
does not have better sizes than the Si test at the 5% level under NULL1, but
it does under NULL2. Both Si and S∗i have better sizes than Qi and Q∗

i with
non-uniform kernels at the 5% level, but not at the 10% level. The truncated
kernel-based test QiTRUN performs similarly to Si. There is little diGerence be-
tween NULL1 and NULL2, suggesting that Qi may be applicable to higher
order GARCH processes.
Table 3 reports the power under ALTER1, the one-way volatility spillover

from Y1t to Y2t with respect to It−1. We use the empirical critical values
at the 10% and 5% levels, which, obtained from the 1000 iterations under
NULL1(A), give size-adjusted powers so that all the tests are compared on
an equal ground. Because Qi and Q∗

i have almost the same power, we report
the power of Qi only. We ,rst consider ALTER1(A), which has a one-period
lag in volatility spillover. Not surprisingly, one-way tests Q1; S1 and S∗1 have
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Table 3
Size-adjusted power at the 10% and 5% level under ALTER1a

ALTER1(A) ALERT1(B)

M 10 20 30 10 20 30
10% 5% 10% 5% 10% 5% 10% 5% 10% 5% 10% 5%

Q1 BAR 73.3 64.1 74.3 65.7 71.2 63.6 42.2 27.4 61.7 50.3 62.7 54.4
DAN 73.5 64.8 72.8 64.9 68.5 59.6 46.9 33.2 65.4 55.3 62.6 54.0
QS 73.4 64.7 73.4 65.9 68.6 59.1 48.2 33.9 65.5 55.4 62.4 53.9
TRUN 70.0 59.0 56.3 41.8 48.7 35.5 65.8 55.9 54.8 43.2 47.4 35.1

S1 70.0 59.0 56.3 41.8 48.7 35.5 65.8 55.9 54.8 43.2 47.4 35.1
S∗1 69.9 58.7 55.3 41.7 47.6 34.9 65.9 56.0 54.8 43.4 46.9 34.3

Q2 BAR 61.2 44.7 62.8 46.9 60.2 46.1 27.7 14.7 47.7 30.0 49.4 35.8
DAN 63.4 47.1 62.5 48.6 56.1 45.0 33.9 17.9 52.6 37.9 50.0 39.9
QS 64.0 47.0 62.7 48.3 56.2 44.5 34.6 18.7 52.9 38.0 50.0 39.6
TRUN 55.8 43.7 44.2 32.5 38.3 27.4 53.0 42.3 42.4 32.8 38.7 26.6

S2 55.8 43.7 44.2 32.5 38.3 27.4 53.0 42.3 42.4 32.8 38.7 26.6
S∗2 55.6 43.4 43.4 31.8 37.6 26.6 52.9 42.5 41.7 31.9 37.7 25.9

aALTER1(A): Yi = 1 + Xit + �it ; �it = �ith
1=2
it ; h1t = 1 + 0:2�21t−1 + 0:5h1t−1 + 0:2�22t−1 +

0:5h2t−1; h2t = 1 + 0:2�22t−1 + 0:5h2t−1; ALTER1(B): Yi = 1 + Xit + �it ; �it = �ith
1=2
it ; h1t = 1 +

0:2�21t−1 + 0:5h1t−1 + 0:2�22t−4 + 0:5h2t−4; h2t = 1 + 0:2�22t−1 + 0:5h2t−1; The sample size T =
500; 1000 iterations; BAR; DAN; QS; TRUN =Bartlett, Daniell, Quadratic-spectral, truncated
kernels.

better power than the two-way tests Q2; S2 and S∗2 , respectively. The three
non-uniform kernels give rather similar power. As expected, the truncated
kernel delivers similar power to Cheung and Ng’s tests. The non-uniform
kernels give better power than the truncated kernel and Cheung and Ng’s
tests, especially for larger M . For the non-uniform kernels, the three diGerent
M ′s give similar power, but for the truncated kernel and Cheung and Ng’s
tests, a larger M gives smaller power. This con,rms our expectation that the
use of non-uniform weighting alleviates the impact of choosing too large a
M because non-uniform weighting discounts higher order lags.
Next, we consider ALTER1(B), which has a four-period lag in volatility

spillover. As under ALTER1(A), Q1; S1 and S∗1 have better power than Q2; S2
and S∗2 ; the three non-uniform kernels give similar power; and the truncated
kernel has similar power to S1 and S∗1 . A feature diGerent from their perfor-
mances under ALTER1(A) is that now the non-uniform kernels have smaller
power than the truncated kernel and Cheung and Ng’s tests when M = 10,
but they become more powerful when M becomes larger.
Table 4 reports the power at the 10% and 5% levels under ALTER2,

the two-way volatility spillover between Y1t and Y2t . Now Q2; S2 and S∗2
have better power than Q1; S1 and S∗1 respectively. Except for this, all power
patterns are similar to those under ALTER1.
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Table 4
Size-adjusted power at the 10% and 5% level under ALTER2a

ALTER2(A) ALTER2(B)

M 10 20 30 10 20 30
10% 5% 10% 5% 10% 5% 10% 5% 10% 5% 10% 5%

Q1 BAR 76.4 66.2 78.2 69.4 75.7 69.2 64.1 50.2 78.5 70.1 79.6 73.5
DAN 76.7 67.2 77.1 70.4 72.9 65.8 68.4 56.3 81.1 74.0 80.5 74.3
QS 76.8 67.4 77.0 70.4 73.0 65.6 68.9 57.6 81.5 74.8 80.1 74.3
TRUN 73.4 64.4 62.8 50.5 57.4 44.5 81.6 74.7 75.1 65.3 71.8 60.3

S1 73.4 64.4 62.8 50.5 57.4 44.5 81.6 74.7 75.1 65.3 71.8 60.3
S∗1 73.4 64.2 62.2 50.2 56.1 43.2 81.6 74.6 74.8 65.4 71.2 59.9

Q2 BAR 95.6 87.3 96.7 92.3 95.6 91.5 79.0 63.3 93.2 86.6 95.1 89.7
DAN 96.5 90.4 96.9 92.7 94.8 90.4 84.7 73.0 95.6 90.3 96.1 91.7
QS 96.6 90.6 96.8 92.9 94.2 90.2 86.0 73.8 95.7 90.3 96.0 91.7
TRUN 94.0 88.6 86.8 78.2 78.8 67.1 95.0 91.2 92.7 89.1 89.9 84.6

S2 94.0 88.6 86.8 78.2 78.8 67.1 95.0 91.2 92.7 89.1 89.9 84.6
S∗2 93.9 88.5 85.3 76.9 77.6 65.5 95.0 91.4 92.6 88.6 89.4 83.9

aALTER2(A): Yi=1+Xit+�it ; �it=�ith
1=2
it ; hit=1+0:2�2it−1+0:5hit−1+0:1�2jt−1+0:19hjt−2; AL-

TER2(B): Yi=1+Xit+�it ; �it=�ith
1=2
it ; hit=1+0:2�2it−1+0:5hit−1+0:1�2jt−4+0:19hjt−4; The sam-

ple size T=500; 1000 iterations; BAR, DAN, QS, TRUN = Bartlett, Daniell, Quadratic-spectral,
truncated kernels.

We now brie1y report the results for T = 300; 800. The size patterns for
T =300; 800 are similar to those for T =500. In particular, all the tests have
reasonable sizes at the 10% level, but tend to overreject a little at the 5%
level. The overrejections become weaker as T increases, but slowly. Both
Qi and Q∗

i continue to have almost the same sizes whether T = 300 or 800,
but S∗i has better sizes than Si when T = 300. On the other hand, the power
patterns for T = 300; 800 are similar to those for T = 500.
In summary, the new tests have reasonable sizes at the 10% level, but tend

to overreject a little at the 5% level. The choice of non-uniform kernels and
the lag truncation number have little impact on the sizes of the new tests. For
the alternatives under study, non-uniform weighting often yields better power
than uniform weighting, which delivers power similar to that of Cheung and
Ng’s tests. Moreover, the use of non-uniform weighting renders the power
relatively robust to the choice of M .
The reason that the tests Q1 and Q2 tend to overreject at the 5% level under

H0 is that they behave as a standardized version of a k2(j=M)-weighted sum
of independent centered �21. Such a standardization converges to N(0; 1) in dis-
tribution as M→∞, and is expected to work reasonably well for large M . For
small and moderate M , however, such a standardized version is right-skewed
in distribution, and consequently, the N(0; 1) approximation will result in
overrejection under H0. To obtain more accurate ,nite sample approximation,
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higher order asymptotic approximation can be considered. This is beyond the
scope of this paper and should be left for other work.

6. Application to exchange rates

Exchange rates volatility clustering has been well documented and has been
a recurrent topic in the literature (e.g., Baillie and Bollerslev, 1989, 1990;
Bekaert, 1995; Bollerslev, 1990; Diebold and Nerlove, 1989; Domowitz and
Hakkio, 1985; Engle and Bollerslev, 1986; Engle et al., 1990; Gallant et
al., 1989; Hsieh, 1988, 1989; Hodrick, 1989; West and Cho, 1995; Zhou,
1996; see also Bollerslev et al., 1992, for a detailed survey and the ref-
erences therein). Investigating volatility spillover is important to understand
the causal relations between exchange rates and the nature of exchange rate
interaction, which are helpful for volatility prediction and forecasting (cf.
Baillie and Bollerslev, 1990; Engle et al., 1990). We now apply our tests
to investigate volatility spillover between two important nominal U.S. dollar
exchange rates—Deutschemark (DM) and Japanese yen (YEN), which are
among most active currencies traded in the foreign exchange market. We
use the weekly spot rates from the ,rst week of 1976:1 to the last week of
1995:11, with totally 1039 observations. The data are interbank closing spot
rates on Wednesdays, obtained from the Bloomberg L.P. The use of Wednes-
day data avoids the so-called weekend eGect. Also, very few holidays occur
on Wednesday; for these holidays, the data on the following Thursdays are
used. Both exchange rates are measured in units of local currency per dollar.
It has been well documented (e.g., Bollerslev, 1990; Diebold and Nerlove,

1989) that the weekly logarithmic exchange rates are ,rst order homoge-
neous nonstationary. 11 Visual inspection suggests little serial correlation for
X ln DMt , although it exhibits persistence in conditional variance. On the
other hand, X ln YENt shows a little serial correlation with non-zero inter-
cept, in addition to obvious volatility clustering. To account for any possible
weak serial correlation, we follow Diebold and Nerlove (1989) and specify
an AR(3) model with non-zero mean and GARCH(1,1) errors:

Yit = bi0 +
3∑
j=1
bijYit−j + �it ; i = 1; 2;

�it = �ith
1=2
it ;

hit =!i + �i�2it−1 + �ihit−1;

11 Bollerslev (1990) and Diebold and Nerlove (1989) use the weekly spot rates on Wednes-
days, with a diGerent time period, that were obtained from the International Monetary Markets
Yearbook.
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Table 5
Quasi-maximum likelihood estimation of univariate GARCH(1; 1) models for Deutschemark and
Japanese Yena

Deutschemark Japanese Yen

Parameter Estimate Estimate

b0 −0:073 (0.041) −0:097 (0.042)
b1 0.049 (0.033) 0.051 (0.034)
b2 0.067 (0.033) 0.093 (0.034)
b3 −0:028 (0.033) 0.066 (0.033)
! 0.051 (0.030) 0.116 (0.068)
� 0.114 (0.027) 0.084 (0.026)
� 0.873 (0.033) 0.863 (0.055)

Sample size 1038 1038
Log-likelihood −1862:307 −1813:625

Box–Pierce test

BP(5) 1.602 [0.901] 1.924 [0.860]
BP(10) 6.610 [0.762] 7.934 [0.635]
BP(20) 10.680 [0.954] 18.349 [0.564]

BP2(5) 8.407 [0.135] 1.803 [0.876]
BP2(10) 15.761 [0.107] 3.255 [0.975]
BP2(20) 26.228 [0.158] 6.623 [0.998]

aThe numbers in the parentheses are standard errors for the estimates and the numbers in
the square brackets are the p-values for Box–Pierce test statistics; BP(M) and BP2(M) are
Box–Pierce portmanteau statistics for the ,rst M autocrrelations of the standardized residual
and squared standardized residuals, respectively.

where Y1t=100X ln DMt and Y2t=100X ln YENt . 12 Table 5 summarizes the
QMLE results of univariate GARCH models for X ln DMt and X ln YENt . For
X ln DMt , the second lag X ln DMt−2 is signi,cant at the 5% level, but the
intercept, X ln DMt−1 and X ln DMt−3 are insigni,cant. The GARCH para-
meter estimates (�̂1; �̂1) are highly signi,cant, with �̂1+�̂1 
 0:99, suggesting
a nearly integrated GARCH process. Table 5 also reports some diagnostic
statistics. The p-values of Box–Pierce portmanteau test statistics for auto-
correlation in standardized residuals {�̂1t =ĥ1t1=2} are 0.90, 0.76 and 0.95, for
M = 5; 10 and 20 respectively, all well above the 10% level. Similarly, the
p-values of Box–Pierce tests for squared standardized residuals {�̂21t =ĥ1t},

12 Diagnostic tests, reported in Table 5, suggest that AR(3) models are adequate for both
X ln DMt and X ln YENt . We also tried higher order AR models; the higher order terms are
insigni,cant and the causality test statistics based on these higher order AR models remain
largely the same.
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Table 6
Test statistics for causality in mean between Deutschemark and Japanese Yena

M 5 10 20 30 40

Q2 DAN 145.230 102.511 72.491 58.949 50.638
(0.000) (0.000) (0.000) (0.000) (0.000)

Q2 TRUN 79.454 57.614 40.021 32.676 28.032
(0.000) (0.000) (0.000) (0.000) (0.000)

S2 383.674 394.383 403.408 421.921 437.789
(0.000) (0.000) (0.000) (0.000) (0.000)

Q1 DAN −0:975 −1:034 −1:116 −1:385 −1:719
(0.835) (0.849) (0.868) (0.917) (0.957)

Q1 TRUN −0:875 −0:909 −1:801 −1:685 −1:677
(0.809) (0.818) (0.964) (0.954) (0.953)

S1 2.233 5.935 8.609 16.945 25.003
(0.816) (0.821) (0.987) (0.973) (0.969)

Q−1 DAN −0:547 −0:388 −0:060 −0:088 −0:297
(0.708) (0.651) (0.524) (0.535) (0.617)

Q−1 TRUN −0:417 0.154 −0:468 −0:359 −0:556
(0.662) (0.439) (0.680) (0.640) (0.711)

S−1 3.681 10.688 17.039 27.216 35.025
(0.596) (0.382) (0.650) (0.612) (0.693)

aQ2 and S2 are the two-way tests for causality in mean between X ln(DMt) and X ln(YENt)
with respect to It−1; Q1 and S1 are the one-way tests for causality in mean from X ln(DMt)
to X ln(YENt) with respect to It−1; Q−1 and S−1 are the one-way tests for causality in mean
from X ln(YENt) to X ln(DMt) with respect to It−1; DAN and TRUN are the Daniell and
truncated kernels; The numbers in the parentheses are the p-values.

for M = 5; 10 and 20, are 0.14, 0.11 and 0.16, respectively. Again, these
values are larger than the 10% level. This suggests the adequacy of the
AR(3)-GARCH(1,1) model for X ln DMt . These ,ndings are much in line
with the previous studies on exchange rates.
In the AR(3)-GARCH(1,1) model for X ln YENt , the intercept, X ln YENt−2

and X ln YENt−3 are all signi,cant at the 5% level. The GARCH parameter
estimates (�̂2; �̂2) are highly signi,cant, with �̂2+�̂2 
 0:95, suggesting strong
volatility clustering. The p-values of Box–Pierce test statistics for autocorrela-

tion in standardized residuals {�̂2t =ĥ
1=2
2t } are 0.86, 0.64 and 0.56 for M=5; 10

and 20, respectively, all well above the 10% level. Also, the p-values of
Box–Pierce tests for squared standardized residuals {�̂22t =ĥ2t}, for M = 5; 10
and 20, are 0.88, 0.98 and 1.00 respectively. These diagnostic results suggest
the adequacy of the AR(3)-GARCH(1,1) model for X ln YENt .
We ,rst consider causality in mean between X ln DMt and X ln YENt .

Table 6 reports our statistics and Cheung and Ng (1996) statistics, together
with their p-values. All the statistics here are based on the sample
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cross-correlation function between standardized residuals {�̂1t =ĥ1t1=2} and
{�̂2t =ĥ2t1=2}. Because commonly used non-uniform kernels deliver similar power,
we only report the Daniell kernel. The Daniell kernel-based test Q2DAN for
two-way causality in mean yields values of 145.23, 102.51, 72.49, 58.95 and
50.64, for M = 5; 10; 20; 30 and 40, respectively. These statistics are signif-
icant at any reasonable levels (compare to the upper-tailed N(0; 1) critical
values), suggesting very strong causality in mean. Cheung and Ng’s S2 test
is also very signi,cant at any reasonable levels for all M . It is impossible
to compare the powers of Q2DAN and S2 using p-values, because they are all
essentially zero. However, our truncated kernel-based test Q2TRUN, which is
a normalized version of S2, has much smaller values than Q2DAN for all M .
In order to identify the direction for causality in mean, we compute two

one-way causality tests: Q1DAN is a test for whether X ln DMt Granger-causes
X ln YENt in mean with respect to It−1, and Q−1DAN is a test for whether
X ln YENt Granger-causes X ln DMt in mean with respect to It−1. Both tests,
for all M = 5; 10; 20; 30 and 40, yields p-values well above the 10% level,
suggesting neither X ln DMt Granger-causes X ln YENt with respect to It−1

nor X ln YENt−1 Granger-causes X ln DMt in mean with respect to It−1.
Therefore, the signi,cant power of Q2DAN should have come solely from
the simultaneous causality between X ln DMt and X ln YENt . In other words,
for causality in mean, there exists only simultaneous interaction between
X ln DMt and X ln YENt . These results are consistent with the ,ndings by
Baillie and Bollerslev (1990, Table IV) using robust LM tests and intra-day
exchange rates data. To some extent, our results support Bollerslev’s (1990)
multivariate GARCH(1,1) model with constant conditional cross-correlation
in modeling the comovement of exchange rate changes. These ,ndings are
hardly surprising, because the movements of exchange rates, to a large extent,
depend on a common set of international economic variables, unobservable
on a weekly basis. In particular, both exchange rates are bilateral dollar rates;
new information coming to the market will aGect both dollar rates. We note
that Cheung and Ng’s S1 and S−1 tests as well as the truncated kernel-based
tests Q1TRUN and Q−1TRUN deliver the same conclusions as Q1DAN and Q−1DAN.
Table 7 reports tests for causality in variance. The values of the two-way

test Q2DAN, for M = 5; 10; 20; 30 and 40, are 65.94, 46.73, 32.57, 26.10 and
22.45, respectively. These values are signi,cant at any reasonable levels,
suggesting strong causality in variance between X ln DMt and X ln YENt .
Similarly, S2 is signi,cant at any reasonable level for all M . The truncated
kernel-based test Q2TRUN, a normalized version of S2, is also signi,cant at
any reasonable level for all M , but its values are much smaller than those of
Q2DAN.
Again, to identify the direction for causality in variance, we compute tests

for one-way volatility spillover: Q1; Q−1; S1 and S−1, where Q1 and S1 test
for volatility spillover from past X ln DMt to X ln YENt , and Q−1 and S−1
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Table 7
Test statistics for causality in variance between Deutschemark and Japanese Yena

M 5 10 20 30 40

Q2 DAN 65.941 46.728 32.572 26.100 22.447
(0.000) (0.000) (0.000) (0.000) (0.000)

Q2 TRUN 36.401 25.722 17.404 14.806 12.322
(0.000) (0.000) (0.000) (0.000) (0.000)

S2 181.738 187.670 198.600 224.537 237.839
(0.000) (0.000) (0.000) (0.000) (0.000)

Q1 DAN 5.420 3.967 2.336 1.442 1.022
(0.000) (0.000) (0.010) (0.075) (0.153)

Q1 TRUN 3.251 1.653 0.564 0.611 −0:155
(0.000) (0.049) (0.286) (0.270) (0.562)

S1 15.282 17.391 23.566 34.736 38.610
(0.009) (0.066) (0.262) (0.252) (0.533)

Q−1 DAN −0:203 −0:536 −0:797 −0:996 −0:929
(0.580) (0.704) (0.788) (0.842) (0.824)

Q−1 TRUN −0:507 −0:616 −1:269 −0:421 −0:428
(0.694) (0.731) (0.898) (0.663) (0.666)

S−1 3.398 7.246 11.976 26.742 36.170
(0.639) (0.702) (0.917) (0.637) (0.643)

aQ2 and S2 are the two-way tests for causality in variance between X ln (DMt) and
X ln (YENt) with respect to It−1; Q1 and S1 are the one-way tests for causality in variance
from X ln (DMt) to X ln (YENt) with respect to It−1; Q−1 and S−1 are the one-way tests for
causality in variance from X ln (YENt) to X ln (DMt) with respect to It−1; DAN and TRUN
are the Daniell and truncated kernels; The numbers in the parentheses are the p-values.

test for volatility spillover from past X lnYENt to X ln DMt . The values of
Q1DAN are 5.42, 3.97, 2.34, 1.44, 1.02 for M = 5; 10; 20; 30; 40, respectively,
suggesting signi,cant volatility spillover from past X ln DMt to X ln YENt at
the 1% level (except for M =30; 40). This ,nding diGers from that of Baillie
and Bollerslev (1990, Table VII), who ,nd no volatility spillover from past
X ln DMt to X ln YENt . In contrast, Q1TRUN and S1 are signi,cant at the 5%
level only for M = 5; 10, and both are less powerful than Q1DAN in terms of
p-value. Clearly, non-uniform weighting gives stronger evidence on volatility
spillover. Finally, the one-directional tests Q−1DAN; Q−1TRUN and S−1 are all
insigni,cant at any reasonable levels for all M=5; 10; 20; 30 and 40, implying
that there is no volatility spillover from past X ln YENt to current X ln DMt .

To summarize: (1) for causality in mean, there exists only strong simul-
taneous interaction between X ln DMt and X ln YENt; (2) for causality in
volatility, there exists strong simultaneous interaction between X ln DMt and
X ln YENt . Also, X ln DMt Granger-causes X ln YENt with respect to It−1

but X ln YENt does not Granger-cause X ln DMt with respect to It−1; (3)
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non-uniform weighting is more powerful than uniform weighting in detecting
volatility spillover between exchange rates.

7. Conclusions

A class of asymptotic N(0; 1) tests for volatility spillover are proposed.
The new tests are based on the sample cross-correlation function between two
squared standardized residual series. We do not assume any speci,c innova-
tion distribution (e.g., normality) and our tests apply to time series that exhibit
conditional heteroskedasticity and may have in,nite unconditional variances.
We permit to use all the sample cross-correlations. This enhances power
against the alternatives whose cross-correlation decays to zero slowly. We also
introduce a 1exible weighting scheme for the cross-correlation at each lag.
In particular, we permit larger weights for lower order lags. This is expected
to give good power against the alternatives with decaying cross-correlations
as the lag order increases. Indeed, non-uniform weighting often delivers bet-
ter power than uniform weighting, as is illustrated in a simulation study and
an application to exchange rates. Cheung and Ng (1996) test and Granger
(1969)-type regression-based test are equivalent to a uniform weighting based
test. Simulation studies show that our tests perform reasonably well in ,nite
samples. Finally, the new tests are applied to investigate causality between
two weekly nominal dollar exchange rates—Deutschemark and Japanese yen.
It is found that for causality in mean, there exists only strong simultaneous
interaction between the two exchange rates. For causality in variance, there
exists strong simultaneous interaction between the two exchange rates; also,
a change in past Deutschemark volatility Granger-causes a change in current
Japanese yen volatility, but a change in past Japanese yen volatility does not
Granger-cause a change in current Deutschemark volatility. This ,nding dif-
fers from such studies as Baillie and Bollerslev (1990), who ,nd no volatility
spillover between Deutschemark and Japanese yen.
Like tests for causality in mean, our tests, as well as Cheung and Ng (1996)

tests, will fail to detect non-linear causation patterns with zero cross-correlation
between the squared innovations. However, the present approach can be ex-
tended to develop a test that has power against such non-linear alternatives.
For this, we can check whether the squared standardized errors {u0t } and {v0t }
are independent. Let I(j) be a measure of dependence between u0t and v0t−j
such that I(j) = 0 if and only if u0t and v0t−j are independent. One example
is the Kullback–Leibler Information Criterion

I(j) = E[ln {fuv(u0t ; v0t−j)=fu(u0t )fv(v0t−j)}];
where fuv, fu and fv are the joint and marginal probability density functions
of u0t and v0t , respectively. Such a measure has been used in identifying
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possible lag structures of non-linear time series (e.g., Granger and Lin, 1994)
and in hypothesis testing (e.g., Hong and White, 2001; Robinson, 1991).
A test that will have power against alternatives with zero cross-correlation
between u0t and v

0
t−j can be based on

T−1∑
j=1
k2(j=M)Î T (j); (34)

where Î T (j) = T−1∑T
t=j+1 ln{f̂(û t ; v̂t−j)=f̂u(û t)f̂v(v̂t−j)}, with f̂uv; f̂u and f̂v

some non-parametric estimators for the joint and marginal density functions
of the squared standardized residuals û t and v̂t−j. The approach of this paper
and that of Hong and White (2001) may be useful in obtaining a well-de,ned
distribution of (34).
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Appendix A: Mathematical appendix

Throughout the appendix, || · || denotes the Euclidean norm of a vector or
a matrix and 0¡�¡∞ denotes a generic constant that may diGer in diGerent
places.

Proof of Theorem 1. Recalling u0t = �21t − 1 and v0t = �
2
2t − 1, we de,ne

Ĉ
0
uv(j)=T

−1∑T
t=j+1 u

0
t v

0
t−j for j¿0; C0

uu(0)=E(u0t )
2 and C0

vv(0)=E(v0t )
2. By

(17), we can write
T−1∑
j=1
k2(j=M)!̂2uv(j)

={Ĉuu(0)Ĉvv(0)}−1
T−1∑
j=1
k2(j=M)Ĉ

0
uv(j)

2

+{Ĉuu(0)Ĉvv(0)}−1
T−1∑
j=1
k2(j=M){Ĉuv(j)2 − Ĉ

0
uv(j)

2}



Y. Hong / Journal of Econometrics 103 (2001) 183–224 211

={C0
uu(0)C

0
vv(0)}−1

T−1∑
j=1
k2(j=M)Ĉ

0
uv(j)

2

+[{Ĉuu(0)Ĉvv(0)}−1 − {C0
uu(0)C

0
vv(0)}−1]

T−1∑
j=1
k2(j=M)Ĉ

0
uv(j)

2

+{Ĉuu(0)Ĉvv(0)}−1
T−1∑
j=1
k2(j=M){Ĉuv(j)2 − Ĉ

0
uv(j)

2} (A.1)

={C0
uu(0)C

0
vv(0)}−1

T−1∑
j=1
k2(j=M)Ĉ

0
uv(j)

2 + oP(M 1=2=T ): (A.2)

Here, we have made use of
∑T−1
j=1 k

2(j=M)Ĉ
0
uv(j)

2 = OP(M=T ) by Markov’s
inequality and

T−1∑
j=1
k2(j=M)EĈ

0
uv(j)

2

=(M=T )C0
uu(0)C

0
vv(0)

{
M−1

T−1∑
j=1

(1− j=T )k2(j=M)

}
=OP(M=T );

where M−1∑T−1
j=1 (1 − j=T )k2(j=M)→ ∫∞

0 k
2(z) dz¡∞ by Assumptions

A:4–A:5. This, together with Lemma A.1 below, implies that the second
term in (A.1) is OP(M=T 3=2)= oP(M 1=2=T ) as M=T→ 0. That the last term in
(A.1) is oP(M 1=2=T ) follows by Lemma A.2 below. The asymptotic normality
of Q1 then follows from (A.2) and Theorem A.3 below. This completes
the proof.

Lemma A.1. Suppose Assumptions A:1–A:5 hold under the model described
by (28)–(30). Then Ĉuu(0) − C0

uu(0) = OP(T
−1=2) and Ĉvv(0) − C0

vv(0) =
OP(T−1=2).

Lemma A.2. Suppose the conditions of Theorem 1 hold. Then
T−1∑
j=1
k2(j=M){Ĉuv(j)2 − Ĉ

0
uv(j)

2}= oP(M 1=2=T ):

Theorem A.3. Suppose the conditions of Theorem 1 hold. Then[
{C0
uu(0)C

0
vv(0)}−1T

T−1∑
j=1
k2(j=M)Ĉ

0
uv(j)

2 − C1T (k)

]/
{2D1T (k)}1=2

→dN(0; 1):

Proof of Lemma A.1. We shall focus on the proof for Ĉuu(0)=T−1∑T
t=1 û

2
t ;

the proof for Ĉvv(0) is the same. By the triangle inequality, we have

|Ĉuu(0)− C0
uu(0)|6 |Ĉuu(0)− Ĉ

0
uu(0)|+ |Ĉ0

uu(0)− C0
uu(0)|;
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where Ĉ
0
uu(0)−C0

uu(0)=OP(T
−1=2) by Chebyshev’s inequality and Assumption

A:1. Therefore, it remains to show Ĉuu(0)− Ĉuu0 (0)=OP(T−1=2). Recall û t ≡
ut(�̂1)= �21t(�̂1)=h1t(�̂1)−1, where �1t(�1) and h1t(�1) are as in (15) and (16),
we have

Ĉuu(0)− Ĉ
0
uu(0) = T−1

T∑
t=1

{ut(�̂1)2 − (u0t )
2}

6 T−1
T∑
t=1

{ut(�̂1)− u0t }2

+ 2
[
T−1

T∑
t=1

{ut(�̂1)− u0t }2
]1=2{

T−1
T∑
t=1

(u0t )
2
}1=2

:

Because T−1∑T
t=1(u

0
t )

2 = OP(1) by Markov’s inequality and Assumption
A:1, it suRces to show T−1∑T

t=1{ut(�̂1)− u0t }2 =OP(T−1). Denote ũ t(�1) =
�21(�1)=h̃1t(�1)− 1, where

h̃1t(�1) =!1 + �1�21t−1(�1) + �1h̃1t−1(�1)

=!1=(1− �1) + �1
∞∑
i=0
�i1�

2
1t−1−i(�1)

is an unobservable strictly stationary process which starts from the in,nite
past (cf. Lee and Hansen, 1994; Lumsdaine, 1996). Note that h̃1t(�01) = h

0
1t

but h1t(�01) �= h01t due to the start-up value h∗10. Consequently, ũ t(�
0
1) = u

0
t but

ut(�01) �= u0t . Now, noting that ut(�̂1)− u0t = {ut(�̂1)− ũ t(�̂1)}+ {ũ t(�̂1)− u0t },
we can write

T−1
T∑
t=1

{ut(�̂1)− u0t }2 6 2T−1
T∑
t=1

{ut(�̂1)− ũ t(�̂1)}2

+ 2T−1
T∑
t=1

{ũ t(�̂1)− u0t }2

= 2Â1T + 2Â2T ; say:

It suRces to show ÂiT =OP(T−1); i=1; 2. We ,rst consider Â1T . Noting that
h̃1t(�1)−h1t(�1)=�t1{h̃10(�1)−h∗10}; ut(�1)=�21t(�1)=h1t(�1)−1; h1t(�1)¿�−1;
h̃1t(�1)¿�−1, where � is independent of �1, we have

Â1T = T−1
T∑
t=1
�41t(�̂1)[{h̃1t(�̂1)− h1t(�̂1)}={h1t(�̂1)h̃1t(�̂1)}]2

6 �−4T−1{h̃10(�̂1)− h∗10}2
T∑
t=1
�̂
2t

1 �
4
1t(�̂1):
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Let 70
1 be a convex compact neighborhood of �01. Because E sup�1∈70

1
|h̃10(�1)|2p

6�¡∞ for 0¡p¡ 1
2 , as shown in Lumsdaine (1996), we have sup�1∈70

1
h̃10
2 (�1)

=OP(1) by Markov’s inequality. In addition, for 0¡p¡ 1
4 , we have

E

{
sup
�1∈70

1

|�41t(�1)|p
}

= E sup
�1∈70

1

|�1t(�01) + (b1 − b01)|4p

6 4E{�1t(�01)}4p + 4 sup
�1∈70

1

|b1 − b01|4p

= 4E(�4p1t )E(h
0
1t)

4p + 4 sup
�1∈70

1

|b1 − b01|4p:

6 8�;

where E(h01t)
4p6�¡∞, as shown in Nelson (1990). It follows that sup�1∈70

1∑T
t=1 �

2t
1 �

4
1t(�1)=OP(1) by Markov’s inequality and 0¡�161−41¡1 for �1 ∈

70
1, where 41¿0 is some arbitrarily small constant. Therefore, A1T=OP(T−1).
Next, by the mean value theorem and the Cauchy–Schwarz inequality, we

have

A2T6 ||�̂1 − �01||2
{
T−1

T∑
t=1

||��1 ũ t( V�1)||2
}
=OP(T−1)

given Assumption A:3, where V�1 lies in the segment between �̂1 and �01, and
��1 is the gradient operator with respect to �1. Here, we have made use of
sup�1∈70

1
T−1∑T

t=1 ||��1 ũ t(�1)||2 =OP(1), which follows by the weak uniform
law of large numbers (e.g., Andrews, 1992, Theorem 3) and the facts that
sup�1∈70

1
E||��1 ũ t(�1)||26� and the elements of sup�1∈70

1
E{��1 ||��1 ũ t(�1)||2}

are bounded by � (cf. Lee and Hansen, 1994, p. 49, p. 52, for their proofs
of Lemmas 9 and 12 in that paper). This completes the proof.

Proof of Lemma A.2. Noting that Ĉuv(j)2 − Ĉ
0
uv(j)

2 = {Ĉuv(j)− Ĉ
0
uv(j)}2 +

2Ĉ
0
uv(j){Ĉuv(j)− Ĉ

0
uv(j)}, we have

T−1∑
j=1
k2(j=M){Ĉuv(j)2 − Ĉ

0
uv(j)

2}

=
T−1∑
j=1
k2(j=M){Ĉuv(j)− Ĉ

0
uv(j)}2

+ 2
T−1∑
j=1
k2(j=M)Ĉ

0
uv(j){Ĉuv(j)− Ĉ

0
uv(j)}

=Â3T + 2Â4T ; say: (A.3)
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We shall prove that both Â3T and Â4T are oP(M 1=2=T ). For j¿0, write

Ĉuv(j)− Ĉ
0
uv(j) = T

−1
T∑

t=j+1
(û t − u0t )v0t−j + T−1

T∑
t=j+1
u0t (v̂t−j − v0t−j)

+T−1
T∑

t=j+1
(û t − u0t )(v̂t−j − v0t−j)

= B̂1T (j) + B̂2T (j) + B̂3T (j); say:

It follows that

Â3T68
T−1∑
j=1
k2(j=M){B̂21T (j) + B̂

2
2T (j) + B̂

2
3T (j)}: (A.4)

For the last term in (A.4), we have

sup
16 j6T−1

B̂
2
3T (j)6

{
T−1

T∑
t=1

(û t − u0t )2
}{
T−1

T∑
t=1

(v̂t − v0t )2
}

= OP(T−2) (A.5)

by Cauchy–Schwarz inequality, T−1∑T
t=1(û t−u0t )2 =OP(T−1) and T−1∑T

t=1
(v̂t − v0t )2 =OP(T−1) as shown in the proof of Lemma A.1. Therefore,

T−1∑
j=1
k2(j=M)B̂

2
3T (j)6 M sup

16 j6T−1
B̂
2
3T (j)

{
M−1

T−1∑
j=1
k2(j=M)

}

= OP(M=T 2): (A.6)

Next, we consider the ,rst term B̂1T (j) in (A.4). Because ut(�̂1) − u0t =
{ut(�̂1)− ũ t(�1)}+ {ũ t(�1)− u0t }, we obtain

B̂1T (j) = T−1
T∑

t=j+1
{ut(�̂1)− ũ t(�̂1)}v0t−j + T−1

T∑
t=j+1

{ũ t(�̂1)− u0t }v0t−j

= B̂11T (j) + B̂12T (j); say: (A.7)

For the ,rst term B̂11T (j) in (A.7), recalling that ut(�̂1)−ũ t(�̂1)=�21t(�̂1){h−1
1t (�̂1)−

h̃
−1
1t (�̂1)} and h̃1t(�̂1)− h1t(�̂1) = �̂

t

1{h̃10(�̂1)− h∗10}, we have

B̂11T (j) = T−1
T∑

t=j+1
�21t(�̂1){h−1

1t (�̂1)− h̃
−1
1t (�̂1)}v0t−j

= T−1{h̃10(�̂1)− h∗10}
T∑

t=j+1
�̂
t

1�
2
1t(�̂1)h

−1
1t (�̂1)h̃

−1
1t (�̂1)v

0
t−j:
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By Cauchy–Schwarz inequality and 0¡�̂161−41¡1 for some small 41¿0,
we obtain

T−1∑
j=1
k2(j=M)B̂

2
11T (j)

6T−2

{
T−1∑
j=1
k2(j=M)

}

×
[
(h̃10(�̂1)− h∗10)2

T∑
t=1
�̂
t

1�
4
1t(�̂1){h−1

1t (�̂1)h̃
−1
1t (�̂1)}2

]{
T∑
t=1
�̂
t

1(v
0
t )

2
}

=OP(M=T 2); (A.8)

where we use sup�1∈70
1
h̃
2
10(�1) =OP(1);

∑T
t=j+1 �̂

t

1�
4
1t(�̂1){h−1

1t (�̂1)h̃
−1
1t (�̂1)}2 =

OP(1) (as can be shown using a reasoning analogous to the proof of Lemma
A.1), and

∑T
t=1 �̂

t

1(v
0
t )

26
∑T
t=1(1− 41)t(v0t )2 =OP(1) by Markov’s inequality

and 0¡�̂161− 41¡1 for �̂1 ∈ 70
1.

Next, for the second term in (A.7), by a two-term Taylor expansion, we
obtain

B̂12T (j) = (�̂1 − �01)′T−1
T∑

t=j+1
��1 ũ t(�01)v0t−j

+
1
2
(�̂1 − �01)′

{
T−1

T∑
t=j+1

�2
�1 ũ t(

V�1)v0t−j

}
(�̂1 − �01)

= B̂121T (j) + B̂122T (j); say; (A.9)

where V�1 lies in the segment between �̂1 and �01, and �2
�1 is the Hessian

operator with respect to �1. For the ,rst term in (A.9), we have
T−1∑
j=1
k2(j=M)B̂

2
121T (j)

6 ||�̂1 − �01||2


T−1∑
j=1
k2(j=M)

∣∣∣∣∣
∣∣∣∣∣T−1

T∑
t=j+1

��1 ũ t(�01)v0t−j

∣∣∣∣∣
∣∣∣∣∣
2



=OP(M=T 2) (A.10)

by Assumption A:3 and
∑T−1
j=1 k

2(j=M)||T−1∑T
t=j+1��1 ũ t(�01)v0t−j||2=OP(M=T ),

which follows by Chebyshev’s inequality and the fact that

E

∣∣∣∣∣
∣∣∣∣∣T−1

T∑
t=j+1

��1 ũ t(�01)v0t−j

∣∣∣∣∣
∣∣∣∣∣
2

= T−2
T∑

t=j+1
E||��1 ũ t(�01)||2E(v0t−j)2

=O(T−1);

where the ,rst equality follows by independence between �1t and �2t .
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For the second term in (A.9), we have
T−1∑
j=1
k2(j=M)B̂

2
122T (j)6 ||�̂1 − �01||4

{
T−1∑
j=1
k2(j=M)

}

×
{
T−1

T∑
t=1

||�2
�1 ũ t(

V�1)||2
}{
T−1

T∑
t=1

(v0t )
2
}

= OP(M=T 2); (A.11)

where sup�1∈70
1
T−1∑T

t=1 ||�2
�1 ũ t(

V�)||2=OP(1), which follows by the weak law
of large numbers (e.g., Andrews, 1992) and the fact that sup�1∈71

0
E||�2

�1 ũ t(�1)||2
6� and the elements of sup�1∈70

1
E{��1 ||�2

�1 ũ t(�1)||2} are bounded by �,
using a reasoning analogous to that of Lee and Hansen (1994, pp. 50–51).
Combining (A.7)–(A.11), we have

T−1∑
j=1
k2(j=M)B̂

2
1T (j) =OP(M=T

2) = oP(M 1=2=T ): (A.12)

Similarly, we also have
T−1∑
j=1
k2(j=M)B̂

2
2T (j) =OP(M=T

2) = oP(M 1=2=T ): (A.13)

Collecting (A.4), (A.6) and (A.12)–(A.13), we have Â3T =
OP(M=T 2) = oP(M 1=2=T ).

Finally, by Cauchy–Schwarz inequality, we have

|Â4T |6
{
T−1∑
j=1
k2(j=M)Ĉ

0
uv(j)

2

}1=2

(Â3T )1=2 =OP(M=T 3=2) = oP(M 1=2=T );

given M=T→ 0, where
∑T−1
j=1 k

2(j=M)Ĉ
0
uv(j)

2 = OP(M=T ) by Markov’s in-
equality. This completes the proof.

Proof of Theorem A.3. Put ST = T
∑T−1
j=1 k

2(j=M)Ĉ
0
uv(j)

2; 92u = C
0
uu(0) and

92v=C
0
vv(0). Then E(ST )=92u9

2
vC1T (k) and 92(T ) ≡ Var(ST )=94u94v2D1T (k)=

94u9
4
v2MD(k){1+o(1)}. It suRces to show 9(T )−1{ST−92u92vCT (k)}→dN(0; 1).

Then

ST = T−1

{
T−2∑
j=1
k2(j=M)

T∑
t=j+2

t−1∑
s=j+1

(u0t v
0
t−j)

2

}

+2T−1

{
T−2∑
j=1
k2(j=M)

T∑
t=j+2

t−1∑
s=j+1

u0t u
0
s v

0
t−jv

0
s−j

}

= VHT + VWT ; say:
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We shall show (i) 9−1(T ){ VHT−92u92vC1T (k)}=oP(1), and (ii) 9−1(T ) VWT →d

N(0; 1). First, we verify (i). Noting E VHT=92u9
2
vC1T (k) and using Minkowski’s

Inequality, we obtain

Var( VHT )6


TT−1∑

j=1
k2(j=M)


E
{
T−1

T∑
t=j+1

[(u0t v
0
t−j)

2 − 92u92v ]
}2


1=2



2

6 �4u�4v(M 2=T )

{
M−1

T−1∑
j=1
k2(j=M)

}2

= O(M 2=T );

where �4u ≡ E(u0t )
4 and �4v ≡ E(v0t )

4. It follows that 9−1(T ){ VHT−92u92vC1T (k)}
=OP(M 1=2=T 1=2)=oP(1) by Chebyshev’s inequality and M=T→ 0. This proves
(i).
Next, we turn to prove (ii). Rewrite

VWT = T−1
T∑
t=3

2u0t

(
t−1∑
s=2
u0s
s−1∑
j=1
k2(j=M)v0t−jv

0
s−j

)
= T−1

T∑
t=3
WTt; say:

Note that (WTt;Ft) is a martingale diGerence sequence because E(WTt |Ft−1)=
0 under H0, where (Ft) is the sequence of sigma ,elds consisting of (u0s ; v

0
s ); s

6 t. We show (ii) by Brown’s (1971) martingale limit theorem, which im-
plies {Var( VWT )}−1=2 VWT →dN(0; 1) if

{Var( VWT )}−1
T∑
t=3
T−2E[W 2

Tt1{T−1|WTt |¿<Var1=2( VWT )}]→ 0 (A.14)

for every <¿0, and

{Var( VWT )}−1
T∑
t=3
T−2Ŵ

2
Tt→p1; (A.15)

where 1(·) denotes the indicator function, and

Ŵ
2
Tt = E{W 2

Tt |Ft−1}= 492u

{
t−1∑
s=2
u0s
s−1∑
j=1
k2(j=M)v0t−jv

0
s−j

}2

:

We note that Var( VWT ) = 92(T ) ∼ M .
To verify condition (A.14), it suRces to show 9−4(T )T−4∑T

t=3 EW
4
Tt =

o(1). Put

Gvts =
s−1∑
j=1
k2(j=M)v0t−jv

0
s−j: (A.16)
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Then WTt=2u0t
∑t−1
s=2 u

0
sG
v
ts. Given Assumption A:1 and independence between

u0t and v
0
s ,

EW 4
Tt = 16�4u

(
t−1∑
s=2
u0sG

v
ts

)4

= 16�24u
t−1∑
s=2

E(Gvts)
4 + 96�4u94u

t−1∑
s2=s1+1

s2−1∑
s1=2

E{(Gvts1)2(Gvts2)2}

6 48�24u

[
t−1∑
s=2

{E(Gvts)4}1=2
]2

= O(t2M 2);

where for t¿s,

E(Gvts)
4 = E

{
s−1∑
j=1
k2(j=M)v0t−jv

0
s−j

}4

=
s−1∑
j=1
k8(j=M)E(v0t−jv

0
s−j)

4

+6
s−1∑
j=2

j−1∑
i=1
k4(i=M)k4(j=M)E(v0t−iv

0
t−jv

0
s−iv

0
s−j)

2

6 3�24vM
2

{
M−1

s−1∑
j=1
k4(j=M)

}2

= O(M 2):

It follows that 9−4(T )T−4∑T
t=3 EW

4
Tt =O(T

−1). Hence, (A.14) holds.

We now verify (A.15) by showing 9−4(T )Var(T−2∑T
t=3 Ŵ

2
Tt)→ 0. By def-

inition of Ŵ
2
Tt , we have Ŵ

2
Tt = 492u

{∑t−1
s=2 u

0
sG
v
ts

}2
. Therefore, it suRces to

show M−2Var(T−2∑T
t=3 Ŵ

2
Tt)→ 0. Write

E
(
T−2

T∑
t=3
Ŵ

2
Tt

)2
= T−4

T∑
t=3

EŴ
4
Tt + 2T−4

T∑
t2=4

t2−1∑
t1=3

E(Ŵ
2
Tt2Ŵ

2
Tt1): (A.17)

Because EŴ
4
Tt = (�4u=94u)EW

4
Tt , the ,rst term

T−4
T∑
t=3

EŴ
4
Tt = (�4u=94u)T

−4
T∑
t=3

EW 4
Tt =O(M

2=T ); (A.18)
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as shown in verifying (A.14). For the second term, given t2¿t1 and the
independence between the i.i.d. sequences {u0t } and {v0s}, we have

E(Ŵ
2
Tt2Ŵ

2
t1) = 1694uE

{(
t2−1∑
s=2
u0sG

v
t2s

)2( t1−1∑
s=2
u0sG

v
t1s

)2}

=1694u
t2−1∑
s2=2

t1−1∑
s1=2

E(u0s2u
0
s1)

2E{(Gvt2s2)2(Gvt1s1)2}

+6494u
t1−1∑
s2=3

s2−1∑
s1=2

E(u0s2u
0
s1)

2E(Gvt2s2G
v
t2s1G

v
t1s2G

v
t1s1)

= 16(�4u − 94u)94u
t1−1∑
s=2

E{(Gvt2s)2(Gvt1s)2}

+1698u
t2−1∑
s2=2

t1−1∑
s1=2

E{(Gvt2s2)2(Gvt1s1)2}

+6498u
t1−1∑
s2=3

s2−1∑
s1=2

E(Gvt2s2G
v
t2s1G

v
t1s2G

v
t1s1);

where for the ,rst term,
t1−1∑
s=2

E{(Gvt2s)2(Gvt1s)2}=O(t1M 2)

by the Cauchy–Schwarz inequality and E(Gvts)
4 = O(M 2), as shown in veri-

fying (A.14). Next, substituting (A.16) and by direct but tedious algebra, we
obtain that for t2¿t1; t2¿s2; t1¿s1,

E{(Gvt2s2)2(Gvt1s1)2}

=
s2−1∑
i=1

s1−1∑
j=1
k4(i=M)k4(j=M)E(v0t2−iv

0
s2−iv

0
t1−jv

0
s1−j)

2 +O(M)

=98v
s2−1∑
i=1

s1−1∑
j=1
k4(i=M)k4(j=M) +O(M);

and for t2¿t1¿s2¿s1,

E{Gvt2s2Gvt2s1Gvt1s2Gvt1s1}= 98vM
{
M−1

s1−1∑
j=1
k8(j=M)

}
=O(M):

It follows that

2T−4
T∑
t2=4

t2−1∑
t1=3

E(Ŵ
2
Tt2Ŵ

2
Tt1) = 494u9

8
v

[
T−1∑
j=1

(1−j=T ){1−(j+1)=T}k4(j=M)

]2

+O(M 2=T+M)

= 494u9
8
v{D1T (k)}2+O(M 2=T+M): (A.19)
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Combining (A.17)–(A.19), we obtain

M−2E
(
T−2

T∑
t=3
Ŵ

2
Tt

)2
= 498u9

8
v{M−1D1T (k)}2 +O(T−1 +M−1):

(A.20)

given M→∞; M=T→ 0. On the other hand,

M−1T−2
T∑
t=3

EŴ
2
Tt = 294u9

4
vM

−1D1T (k): (A.21)

Combining (A.20)–(A.21) yields M−2Var(T−2∑T
t=3 Ŵ

2
Tt) = o(1), ensuring

condition (A.15). It follows 9−1(T ) VWT →dN(0; 1) by Brown’s (1971) theo-
rem. This completes the proof.

Proof of Theorem 2. Because M−1C1T (k)→
∫∞
0 k

2(z) dz; M−1D1T (k)→M∫∞
0 k

4(Z) and M=T→ 0, we have

M 1=2

T
Q1 =

{
2
∫ ∞

0
k4(z) dz

}−1=2
{
T−1∑
j=1
!̂2uv(j)

}
{1+o(1)}+o(1): (A.22)

Moreover, by (A.1), Lemma A.1, Lemmas A.5–A.6 below, and !uv(j) =
C0
uv(j)={C0

uu(0)C
0
vv(0)}1=2, we obtain

T−1∑
j=1
!̂2uv(j)→p

∞∑
j=1
!2uv(j): (A.23)

Combining (A.22) and (A.23) yields the desired result.

Lemma A.5. Suppose the conditions of Theorem 2 hold. Then
T−1∑
j=1
k2(j=M){Ĉuv(j)2 − Ĉ

0
uv(j)

2}=OP(M 1=2=T 1=2):

Lemma A.6. Suppose the conditions of Theorem 2 hold. Then
T−1∑
j=1
k2(j=M)Ĉ

0
uv(j)

2 →p
∞∑
j=1
C0
uv(j)

2:

Proof of Lemma A.5. Putting Â3T =
∑T−1
j=1 k

2(j=M){Ĉuv(j)− Ĉ
0
uv(j)}2 as in

(A.3), we have
T−1∑
j=1
k2(j=M)

∣∣∣Ĉuv(j)2 − Ĉ0
uv(j)

2
∣∣∣

6 Â3T + 2(Â3T )1=2
{
T−1∑
j=1
k2(j=M)Ĉ

0
uv(j)

2

}1=2

:
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Because
∑T−1
j=1 k

2(j=M)Ĉ
0
uv(j)

2=OP(1) by Lemma A.6 and
∑∞
j=1 C

0
uv(j)

2¡∞,
it suRces to show Â3T = OP(M=T ), which we now focus on. By (A.4), it
suRces to show

T−1∑
j=1
k2(j=M)B̂

2
iT (j) =OP(M=T ); i = 1; 2; 3; (A.24)

where the B̂iT (j) are de,ned as in (A.4). As shown in the proof of Lemma
A.1, we have T−1∑T

t=1(û t−u0t )2=OP(T−1) and T−1∑T
t=1(v̂t−v0t )2=OP(T−1)

under Assumptions A:1–A:5. It follows that sup16 j6T−1B̂
2
iT (j) = OP(T

−1)
for i=1; 2; 3 by the Cauchy–Schwarz inequality and Assumption A:1. This,
together with

∑T−1
j=1 k

2(j=M)=O(M), implies (A.24). The proof is then com-
pleted.

Proof of Lemma A.6. We ,rst write

T−1∑
j=1
k2(j=M)Ĉuv(j)2 =

T−1∑
j=1
k2(j=M)C0

uv(j)
2

+
T−1∑
j=1
k2(j=M){Ĉ0

uv(j)− C0
uv(j)}2

+ 2
T−1∑
j=1
k2(j=M){Ĉ0

uv(j)− C0
uv(j)}C0

uv(j)

= Â4T + Â5T + 2Â6T ; say: (A.25)

For the ,rst term in (A.25), we have

Â4T =
∞∑
j=1
C0
uv(j)

2 +
T−1∑
j=1

{k2(j=M)− 1}C0
uv(j)

2 −
∞∑
j=T
C0
uv(j)

2

→
∞∑
j=1
C0
uv(j)

2; (A.26)

where
∑∞
j=T C

0
uv(j)

2 → 0 given
∑∞
j=1 C

0
uv(j)

2¡∞, and
∑T−1
j=1 {k2(j=M) − 1}

C0
uv(j)

2 → 0 by dominated convergence, k2(j=M) − 1→ 0 for any given j as
M→∞|k2(j=M)− 1|62, and

∑∞
j=1 C

0
uv(j)

2¡∞.
Next, we consider the second term of (A.25). Because sup16 j6T−1

Var{Ĉuv0 (j)}6XT−1 given
∑∞
i=−∞

∑∞
j=−∞

∑∞
l=−∞ |0uvuv(i; j; l)|¡∞ and∑∞

j=1 !
2
uv(j)¡∞ (cf. Hannan, 1970, (3:3), p. 209), we have

Â5T =OP(M=T ) (A.27)
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by Markov’s inequality and
∑T−1
j=1 k

2(j=M) = O(M). Finally, by Cauchy–
Schwartz inequality and (A.26)–(A.27), we have

Â6T =OP(M 1=2=T 1=2): (A.28)

Combining (A.25)–(A.28) yields the desired result. This completes the proof.
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