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We develop a nonparametric specification test for continuous-time models using the

transition density. Using a data transform and correcting for the boundary bias of

kernel estimators, our test is robust to serial dependence in data and provides

excellent finite sample performance. Besides univariate diffusion models, our test is

applicable to a wide variety of continuous-time and discrete-time dynamic models,

including time-inhomogeneous diffusion, GARCH, stochastic volatility, regime-

switching, jump-diffusion, and multivariate diffusion models. A class of separate

inference procedures is also proposed to help gauge possible sources of model mis-

specification. We strongly reject a variety of univariate diffusion models for daily

Eurodollar spot rates and some popular multivariate affine term structure models for

monthly U.S. Treasury yields.

Continuous-time models have been widely used in finance to capture

the dynamics of important economic variables, such as interest rates,

exchange rates, and stock prices. The well-known option pricing model

of Black and Scholes (1973) and the term structure model of Cox,

Ingersoll, and Ross (1985, CIR), for example, assume that the underlying

state variables follow diffusion processes. Economic theories usually do

not suggest a functional form for continuous-time models, and researchers

often use convenient specifications for deriving closed-form solutions for
various security prices.
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The last decade has seen the development of a large and still growing

literature on the estimation of continuous-timemodels.1Motivated byLo’s

(1988) finding that estimating the discretized version of a continuous-time

model can result in inconsistent parameter estimates, many econometric

methods have been developed to estimate continuous-time models using
discretely sampled data.2 However, there is relatively little effort on spec-

ification analysis for continuous-time models. Model misspecification

generally yields inconsistent estimators of model parameters and their

variance–covariance matrix, which could lead to misleading conclusions

in inference and hypothesis testing. Moreover, a misspecified model can

yield large errors in pricing, hedging, and risk management. It is there-

fore important to develop reliable specification tests for continuous-

time models.
In a pioneering work, Ait-Sahalia (1996) develops probably the first

nonparametric test for diffusion models. Observing that the drift and

diffusion functions completely characterize the marginal density of a

diffusion model, Ait-Sahalia (1996) compares a model marginal density

estimator with a nonparametric counterpart using discretely sampled

data. The test makes no restrictive assumption on the diffusion process

and can detect a wide range of alternatives—an appealing property not

shared by parametric approaches [e.g., Conley, Hansen, Luttmer, and
Scheinkman (1997)]. In an application to daily Eurodollar interest rates,

Ait-Sahalia (1996) rejects all existing univariate linear drift models using

asymptotic theory and finds that ‘‘the principal source of rejection of

existing models is the strong nonlinearity of the drift.’’ Stanton (1997),

using nonparametric kernel regression, also finds a significant nonlinear

drift in spot rate data.3

Subsequent studies have pointed out the limitations of the nonpara-

metric methods used by Ait-Sahalia (1996) and Stanton (1997) and
questioned the findings of nonlinear drift. Pritsker (1998) shows that

1 Sundaresan (2001) states that ‘‘perhaps the most significant development in the continuous-time field
during the last decade has been the innovations in econometric theory and in the estimation techniques
for models in continuous time.’’ For other reviews of the recent literature, see, e.g., Tauchen (1997) and
Campbell, Lo, and MacKinlay (1997).

2 Available estimation procedures include, among many others, the nonparametric methods of Ait-Sahalia
(1996), Stanton (1997), and Jiang and Knight (1997), the simulated method of moments of Duffie and
Singleton (1993), the efficient method of moments (EMM) of Gallant and Tauchen (1996), the general-
ized method of moments of Hansen and Scheinkman (1995), the maximum likelihood method of Lo
(1988) (numerically solving the forward Kolmogorov equation) and Ait-Sahalia (2002a,b) (closed-form
approximation using Hermite polynomials), the simulated maximum likelihood method of Pedersen
(1995) and Brandt and Santa-Clara (2002), the empirical characteristic function approach of Singleton
(2001) and Jiang and Knight (2002), and the Monte Carlo Markov Chain method of Eraker (2001).

3 The main finding of Ait-Sahalia (1996) is that the drift is zero when the interest rate is between 4 and 16%
and mean-reverting occurs at both extremes, which he called ‘‘locally unit root behavior.’’ Thus,
nonlinearity does not refer exclusively to what happens below 4% and above 16% (where confidence
intervals are wide due to the scarcity of data) but to the overall shape including the lack of a visible drift
between 4 and 16%. A similar explanation also applies to Stanton’s (1997) results.
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Ait-Sahalia’s (1996) test has poor finite sample performance because of

persistent dependence in interest rate data and slow convergence of the

nonparametric density estimator. Using an empirically relevant Vasicek

(1977) model, Pritsker finds that the test tends to overreject the null

hypothesis, and it needs 2755 years of daily data for the asymptotic theory
to work adequately. Chapman and Pearson (2000) also show that the non-

parametric methods used by Ait-Sahalia (1996) and Stanton (1997) pro-

duce biased estimates near the boundaries of data, which could produce a

spurious nonlinear drift. The findings of Pritsker (1998) and Chapman

and Pearson (2000) thus cast serious doubts on the applicability of non-

parametric methods in finance, since persistent dependence is a stylized

fact for interest rates and many other high-frequency financial data.

We develop an omnibus nonparametric specification test for
continuous-time models based on the transition density, which, unlike

the marginal density used by Ait-Sahalia (1996), captures the full

dynamics of a continuous-time process. Our basic idea is that if a model

is correctly specified, then the probability integral transform of data via

the model transition density should be i.i.d. U [0, 1]. The probability

integral transform can be called the ‘‘generalized residuals’’ of the

continuous-time model. We shall test the i.i.d. U [0, 1] hypothesis for the

model generalized residuals by comparing a kernel estimator of the joint
density of the generalized residuals with the product of two U [0, 1]

densities.4 Our approach has several advantages.

First, our test significantly improves the size and power performance of

the marginal density-based test, thanks to the use of the transition density

and the probability integral transform. The marginal density-based test is

computationally convenient and can detect many alternatives. However, it

can easily miss the alternatives that have the same marginal density as the

null model. In contrast, our transition density-based test can effectively
pick them up. The probability integral transform helps achieve robustness

of our test to persistent dependence in data. Because there is no serial

dependence in the generalized residuals under correct model specification,

nonparametric density estimators are expected to perform well in finite

samples. Also, we use a modified kernel to alleviate the notorious ‘‘bound-

ary bias’’ of kernel estimators. Simulations involving univariate and multi-

variate models show that our test has reasonable size and good power

against a variety of alternatives in finite samples even for persistently
dependent data.

Second, as we impose regularity conditions on the transition density

rather than the stochastic differential equation of the underlying process,

4 While the transition density has no closed form for most continuous-time models, many methods exist in
the literature to provide accurate approximations of the transition density [e.g., Ait-Sahalia (2002a,b),
Ait-Sahalia and Kimmel (2002), Duffie, Pedersen and Singleton (2003)].
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our test is generally applicable: besides the univariate time-homogeneous

diffusion models considered in Ait-Sahalia (1996), a wide variety of

continuous-time and discrete-time dynamic models, such as time-

inhomogeneous diffusion, GARCH, stochastic volatility, regime-

switching, jump-diffusion, and multivariate diffusion models, are also
covered. Many financial models have non-nested specifications with

different estimation methods, so it has been challenging to formally

compare their relative goodness of fit [see, e.g., Dai and Singleton (2000)

for a discussion of affine models]. Our approach provides a unified frame-

work under which the relative performance of different models can be

compared by a metric measuring the departures of their generalized

residuals from i.i.d. U[0, 1].

Third, the model generalized residuals provide valuable information
about sources of model misspecification. Intuitively, the i.i.d. property

characterizes correct dynamic specification, and the U[0, 1] property

characterizes correct specification of the stationary distribution. To fully

utilize the rich information in the generalized residuals, we also develop a

class of rigorous separate inference procedures based on the autocorrela-

tions in the powers of the model generalized residuals. These procedures

complement Gallant and Tauchen’s (1996) popular EMM-based indi-

vidual t-tests and can be used to gauge how well a model captures various
dynamic aspects of the underlying process.

To highlight our approach, we apply our tests to evaluate a variety of

popular univariate spot rate models and multivariate term structure mod-

els. Using the same daily Eurodollar interest rate data, we reexamine the

spot rate models considered in Ait-Sahalia (1996). While Ait-Sahalia

(1996) rejects all linear drift models using asymptotic critical values, one

would not reject Chan, Karolyi, Longstaff, and Sanders’s (1992, CKLS)

model and Ait-Sahalia’s (1996) nonlinear drift model using the empirical
critical values obtained in Pritsker (1998) for Ait-Sahalia’s (1996) test. In

contrast, our omnibus test firmly rejects all univariate diffusion models,

and we find that nonlinear drift does not significantly improve goodness

of fit. Our omnibus test also overwhelmingly rejects the three-factor

completely and essentially affine models of Dai and Singleton (2000)

and Duffee (2002), using monthly U.S. Treasury yields over the last 50

years. Affine models that are flexible in capturing the conditional variance

and correlation of state variables and market prices of risk have the best
performance and they fit the middle and long end of the yield curve better

than the short end.

In Section 1, we introduce our omnibus test and separate inference

procedures. In Section 2, we study finite sample size and the power of the

omnibus test via simulation. In Sections 3 and 4, we evaluate a variety of

popular univariate diffusion models for daily Eurodollar interest rates and

multivariate affine term structure models for monthly U.S. Treasury
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yields, respectively. Section 5 concludes the discussion. The appendix gives

the asymptotic theory. AGAUSS code for implementing our omnibus test

is available from yh20@cornell.edu upon request.

1. Approach and Test Statistics

We now develop an omnibus nonparametric specification test for

continuous-time models using the transition density. As our test is most

closely related to Ait-Sahalia’s (1996) marginal density-based test, we first

follow Ait-Sahalia (1996) and consider univariate diffusion processes for
comparison. In later sections, we will consider more general processes.

1.1 Dynamic probability integral transform

Suppose a state variable Xt follows a continuous-time (possibly time-

inhomogeneous) diffusion:

dXt ¼ m0ðXt, tÞdtþ s0ðXt, tÞdWt,

where m0(Xt, t) and s0(Xt, t) are the true drift and diffusion functions, and

Wt is a standard Brownian motion. Often it is assumed that m0(Xt, t) and

s0(Xt, t) belong to a certain parametric family:

m0 2 Mm �fmð � , � , uÞ, u 2 Qg and s0 2 Ms �fsð � , � , uÞ, u 2 Qg,

where Q is a finite-dimensional parameter space. We say that models Mm

and Ms are correctly specified for drift m0(Xt, t) and diffusion s0(Xt, t),

respectively, if

H0 : P½mðXt, t, u0Þ ¼ m0ðXt, tÞ,sðXt, t, u0Þ ¼ s0ðXt, tÞ� ¼ 1

for some u0 2 Q: ð1Þ

The alternative hypothesis is that there exists no parameter value u2Q

such that m(Xt, t, u) and s(Xt, t, u) coincide with m0(Xt, t) and s0(Xt, t),

respectively, that is,

HA : P½mðXt, t, uÞ ¼ m0ðXt, tÞ,sðXt, t, uÞ ¼ s0ðXt, tÞ�< 1

for all u 2 Q: ð2Þ

We will test whether a continuous-time model is correctly specified using

fXtDgnt¼1, a discrete sample of {Xt} observed over a time span T at interval

D, with the sample size n�T/D.

Assuming that Xt is a strictly stationary time-homogenous diffusion,
Ait-Sahalia (1996) observes that any pair of drift model m(Xt, u) and

diffusion model s(Xt, u) completely characterizes the model marginal

density

pðx, uÞ ¼ jðuÞ
s2ðx, uÞ exp

Z x

x0

2mðy, uÞ
s2ðy, uÞ dy

� �
,
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where j(u) is a standardization factor and x0 is the lower bound of the

support of Xt. Ait-Sahalia (1996) proposes a novel test by comparing a

kernel-based marginal density estimator p̂p0ð�Þ for {XtD} with a parametric

counterpart pð � , ûuÞ, where ûu is a minimum-distance estimator for u. The

test is easy to implement and has power against many alternatives, but it
will miss the alternatives that have the same marginal density as the null

model.

Unlike the marginal density, the transition density of Xt can capture

its full dynamics. Let p0(x, t j y, s) be the transition density of Xt; that

is, the conditional density of Xt¼ x given Xs¼ y, s< t. For a given pair

of drift model m(Xt, t, u) and diffusion model s(Xt, t, u), a family of

transition densities {p(x, t j y, s, u)} is characterized. When (and

only when) H0 in Equation (1) holds, there exists some u0 2 Q such
that p(x, t j y, s, u0)¼ p0(x, t j y, s) almost everywhere for all t> s. Hence,

the hypotheses of interest H0 in Equation (1) versus HA in Equation (2)

can be equivalently written as:

H0 : pðx, t jy, s,u0Þ ¼ p0ðx, t jy, sÞ almost everywhere for some u0 2Q ð3Þ

versus the alternative hypothesis

HA : pðx, t j y, s, uÞ 6¼ p0ðx, t j y, sÞ for some t> s and for all u 2 Q: ð4Þ

A natural approach to testing H0 in Equation (3) versus HA in

Equation (4) would be to follow Ait-Sahalia (1996) and compare a

model transition density estimator pðx, t j y, s, ûuÞ with a nonparametric

counterpart, say p̂p0ðx, t j y, sÞ.5 From Pritsker’s (1998) analysis, however,
we expect that the size performance of such a nonparametric test could be

even worse than the marginal density-based test, because p̂p0ðx, t j y, sÞ
converges more slowly than the marginal density estimator p̂p0ðxÞ due to

the well-known ‘‘curse of dimensionality.’’6 Furthermore, the finite sam-

ple distribution of the resulting test statistic is expected to be sensitive to

dependent persistence in data.

Instead of comparing pðx, t j y, s, ûuÞ and p̂p0ðx, t j y, sÞ directly, we first

transform the sample fXtDgnt¼1 via the following dynamic probability
integral transform:

ZtðuÞ�
Z XtD

�1
p½x, tDjXðt�1ÞD, ðt� 1ÞD, u�dx, t ¼ 1, . . . , n: ð5Þ

5 In addition to the marginal density-based test, Ait-Sahalia (1996) also develops a nonparametric test
based on some functional of the transition density as implied by the forward and backward Kolmogorov
equations under stationarity. This test, however, cannot capture the full dynamics of Xt.

6 Under certain regularity conditions, the optimal convergence rates of p̂p0ðxÞ and p̂p0ðx, t j y, sÞ are O(n�2/5)
and O(n�1/3), respectively. See Robinson (1983) for relevant discussion in the time series context.
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Under H0 in Equation (3), there exists some u0 2 Q such that

p½x, tDjXðt�1ÞD, ðt� 1ÞD, u0� ¼ p0½x, tDjXðt� 1ÞD, ðt� 1ÞD�

almost surely for all D> 0,

and the series fZt �Ztðu0Þgnt¼1 is i.i.d. U[0, 1]. This is first proven, in

a simpler context, by Rosenblatt (1952), and is used to evaluate

out-of-sample density forecasts by Diebold, Gunther, and Tay (1998)

and Hong (2001) in discrete-time contexts. We call {Zt(u)} the ‘‘general-

ized residuals’’ of model p(x, t j y, s, u). Intuitively, the i.i.d. property
characterizes correct specification of the model dynamics, and the U[0, 1]

property characterizes correct specification of the model marginal

distribution.

Thus, we can test H0 versus HA by checking whether the generalized

residual series {Zt(u)} is i.i.d. U[0, 1] for some u¼ u0. In general, it is dif-

ficult to compute {Zt(u)} because the transition density of most

continuous-time models has no closed-form. However, we can accurately

approximate the model transition density by using the simulation methods
of Pedersen (1995) and Brandt and Santa-Clara (2002), the Hermite

expansion approach of Ait-Sahalia (2002a,b), or, for affine diffusions,

the closed-form approximation of Duffie, Pedersen, and Singleton

(2003) and the empirical characteristic function approach of Singleton

(2001) and Jiang and Knight (2002).

1.2 Nonparametric omnibus test

It is nontrivial to test the joint hypothesis of i.i.d. U[0, 1] for fZtgnt¼1. One

may suggest using the well-known Kolmogorov–Smirnov test, which

unfortunately checks U[0, 1] under the i.i.d. assumption rather than tests
i.i.d. andU[0, 1] jointly. It would easily miss the non-i.i.d. alternatives with

uniform marginal distribution. Moreover, the Kolmogorov–Smirnov test

cannot be used directly because it does not take into account the impact of

parameter estimation uncertainty on the asymptotic distribution of the

test statistic.

We propose to test i.i.d. U[0, 1] by comparing a kernel estimator ĝgj
ðz1, z2Þ for the joint density gj(z1, z2) of {Zt, Zt�j} with unity, the product

of twoU[0, 1] densities. Our approach has at least three advantages. First,
as there is no serial dependence in {Zt} under H0 in Equation (3), non-

parametric joint density estimators are expected to performmuch better in

finite samples. In particular, the finite sample distribution of the resulting

test will be robust to dependent persistence in data. Second, there is no

asymptotic bias for nonparametric density estimators under H0 in

Equation (3), because the conditional density ofZt given {Zt�1, Zt�2, . . . }
is a constant. Third, our test can be applied to time-inhomogeneous
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continuous-time processes because {Zt} is always i.i.d. U[0, 1] under

correct model specification.7

Our kernel estimator of the joint density gj (z1, z2) is, for any

integer, j> 0,

ĝgjðz1, z2Þ� ðn� jÞ�1
Xn
t¼jþ1

Khðz1, ẐZtÞKhðz2, ẐZt�jÞ, ð6Þ

where ẐZt ¼ ZtðûuÞ, ûu is any
ffiffiffi
n

p
-consistent estimator for u0, and Kh(z1, z2)

is a boundary-modified kernel defined below. For x 2 [0, 1], we define

Khðx, yÞ�

h�1k
� x�y

h

��Z 1

�ðx=hÞ
kðuÞdu, if x 2 ½0, hÞ,

h�1k
� x�y

h

�
, if x 2 ½h, 1� h�,

h�1k
�x�y

h

��Z ð1�xÞ=h

�1

kðuÞdu, if x 2 ð1�h, 1�,

8>>>>>>><>>>>>>>:
ð7Þ

where the kernel k(�) is a prespecified symmetric probability density, and

h� h(n) is a bandwidth such that h ! 0, nh ! 1 as n ! 1. One example

of k( � ) is the quartic kernel

kðuÞ ¼ 15
16
ð1� u2Þ21ðjuj � 1Þ,

where 1(�) is the indicator function. We will use this kernel in our simula-

tion study and empirical applications. In practice, the choice of h is more

important than the choice of k(�). Like Scott (1992), we choose h ¼ ŜSZn
�1

6,

where ŜSZ is the sample standard deviation of fẐZtgnt¼1. This simple band-

width rule attains the optimal rate for bivariate density estimation.

We use the modified kernel in Equation (7) because the standard kernel
density estimator produces biased estimates near the boundaries of data

due to asymmetric coverage of the data in the boundary regions. The

denominators of Kh(x, y) for x2 [0, h)[ (1� h, 1] account for the

asymmetric coverage and ensure that the kernel density estimator is

asymptotically unbiased uniformly over the entire support [0, 1]. Our

modified kernel has advantages over some alternative solutions to the

boundary bias problem. One popular solution is to simply ignore the data

in the boundary regions and use only the data in the interior region. Such
trimming is simple, but in the present context, it may lead to the loss of a

significant amount of information. If h¼ sn�
1
5, where s2¼ var(Zt), for

example, then about 23, 20, and 10% of a U [0, 1] sample will fall into

7 Egorov, Li, and Xu (2003) extend Ait-Sahalia’s (2002a) Hermite expansion approach to obtain accurate
closed-form approximation for the transition density of time-inhomogeneous diffusion models.
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the boundary regions when n¼ 100, 500, and 5000 respectively.8 For

financial time series {XtD}, one may be particularly interested in its tail

distribution, which is exactly contained in (and only in) the boundary

regions of {Zt}!

Alternatively, one can follow Chapman and Pearson (2000) to use the
jackknife kernel to eliminate the boundary bias.9 The jackknife kernel,

however, has the undesired property that it may generate negative density

estimates in the boundary regions. It also gives a relatively large variance

for the kernel estimates in the boundary regions, adversely affecting the

power of the test in finite samples. In contrast, our modified kernel in

Equation (7) always gives nonnegative density estimates with a smaller

variance in the boundary regions than a jackknife kernel.

Similar to that in Ait-Sahalia (1996), our test is based on a quadratic
form between ĝgjðz1, z2Þ and 1, the product of two U [0, 1] densities:

M̂MðjÞ�
Z 1

0

Z 1

0

½ĝgjðz1, z2Þ� 1�2dz1dz2: ð8Þ

Our test statistic is a properly centered and scaled version of M̂Mð jÞ:

Q̂Qð jÞ�
�
ðn� jÞhM̂Mð jÞ�A0

h

�
=V

1=2
0 , ð9Þ

where the nonstochastic centering and scale factors

A0
h � ðh�1 � 2Þ

Z 1

�1

k2ðuÞduþ 2

Z 1

0

Z b

�1

k2bðuÞdudb
� �2

�1, ð10Þ

V0 � 2

� Z 1

�1

Z 1

�1

kðuþ vÞkðvÞdv
� �2

du

�2
, ð11Þ

and kbð�Þ � kð�Þ=
R b

�1
kðvÞdv: The modification of k(�) in the boundary

regions does not affect the asymptotic variance V0, but it affects the

centering constant A0
h, and this effect does not vanish even when n ! 1.

Under correct model specification, we can show (see Theorem 1 in the

appendix) that as n ! 1,

Q̂Qð jÞ!Nð0, 1Þ in distribution:

The first lag j¼ 1 is often the most informative and important, but other

lags may also reveal useful information on model misspecification. We

8 The generalized residual series {Zt} is uniformly distributed over [0, 1] under H0 regardless of the
distribution of the original series {XtD}. Under HA, the proportion of the original observations
fXtDgnt¼1 that fall into the boundary regions of {Zt} can be either smaller or larger than those under
H0, depending on the model and the true data generating process Xt.

9 See H€aardle (1990) for further discussion on the jackknife kernel.
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have, under correct model specification,

cov½Q̂QðiÞ, Q̂QðjÞ�!0 in probability for i 6¼ j

as n!1. This implies that Q̂QðiÞ and Q̂Qð jÞ are asymptotically independent

whenever i 6¼ j (cf. Theorem 2 in the appendix). As a result, we can

simultaneously use multiple statistics fQ̂Qð jÞg with different lags to exam-

ine at which lag(s) the i.i.d. U[0, 1] property is violated.
Under model misspecification, we can show that as n ! 1,

Q̂Qð jÞ!1 in probability

whenever {Zt, Zt�j} are not independent or U [0, 1] (see Theorem 3 in the

appendix).10

We now summarize our omnibus test procedure: (1) estimate the

continuous-time model using any method that yields a
ffiffiffi
n

p
-consistent

estimator ûu;11 (2) compute the model generalized residuals fẐZt ¼
ZtðûuÞgnt¼1, where Zt(u) is given in Equation (5); (3) compute the

boundary-modified kernel joint density estimator ĝgjðz1, z2Þ in Equation (6)
for a prespecified lag j; (4) compute the test statistic Q̂Qð jÞ in Equation (9),

and compare it with the upper-tailed N(0,1) critical value Ca at level a

(e.g., C0.05¼ 1.645). If Q̂Qð jÞ>Ca, reject H0 at level a. Note that upper-

tailed N(0,1) critical values are suitable because for sufficiently large n,

negative values of Q̂Qð jÞ occur only under H0.
12

1.3 Separate inference

When a model is rejected using Q̂Qð jÞ, it would be interesting to explore

possible sources of the rejection. The model generalized residuals {Zt(u)}
contain rich information on model misspecification. In an out-of-sample

density forecast context, Diebold, Gunther, and Tay (1998) illustrate how

to use the histogram of {Zt} and autocorrelogram in the powers of {Zt}

to reveal sources of model misspecification. Similarly, we can compare the

kernel-based marginal density estimator of the generalized residuals with

10 In both our simulation study and empirical application below, we find that the power of Q̂Qð jÞ is more
or less robust to lag order j. However, from a theoretical perspective, the power of Q̂Qð jÞ could be sensitive
to the choice of j. To avoid this, we can consider a portmanteau test statistic W ðpÞ ¼ p�1=2

Pp
j¼1 Q̂QðjÞ;

which, for any fixed integer p> 0, converges to N(0, 1) under H0 given Theorems 1 and 2. The power of
W( p) still depends on the choice of p, but such dependence is expected to be less severe than the
dependence of Q̂QðjÞ on the choice of j.

11 As an important feature of our test, we only require that the parameter estimator ûu be
ffiffiffi
n

p
-consistent. We

need not use asymptotically most efficient estimator. The sampling variation in ûu has no impact on the
asymptotic distribution of Q̂Qð jÞ. This delivers a convenient and generally applicable procedure in
practice, because asymptotically most efficient estimators such as MLE or approximated MLE may be
difficult to obtain in practice. One could choose a suboptimal, but convenient, estimator in implementing
our procedure.

12 We also develop an omnibus test based on the Hellinger metric, which is a quadratic form betweenffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ĝgjðz1; z2Þ

p
and

ffiffiffiffiffiffiffiffi
1 � 1

p
¼ 1. The Hellinger metric is more robust to imprecise parameter estimates and

outliers in data. Our simulation shows that the Hellinger metric test has less (more) accurate size than the
Q̂Qð jÞ test when n< 1000 (n� 1000). These results are available from the authors upon request.
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U[0, 1] to check how well a model fits the stationary distribution of the

underlying process (e.g., whether the model can explain skewness and

kurtosis). We can also examine autocorrelations in the powers of Zt,

which are very informative about how well a model fits various dynamic

aspects of the underlying process.
Although intuitive and convenient, these graphical methods ignore the

impact of parameter estimation uncertainty in ûu on the asymptotic dis-

tribution of evaluation statistics, which generally exists even when n!1.

Here, we provide a class of rigorous separate inference procedures that

address this issue:

Mðm,lÞ�
Xn�1

j¼1

w2ðj=pÞðn�jÞr̂r2mlðjÞ�
Xn�1

j¼1

w2ðj=pÞ
" #,

2
Xn�2

j¼1

w4ðj=pÞ
" #1=2

, ð12Þ

where r̂rmlðjÞ is the sample cross-correlation between ẐZm
t and ẐZl

t�jjj, and
w(�) is a weighting function of lag order j. We assume that w(�) is sym-

metric about zero and continuous on R except for a finite number of
points. An example is the Bartlett kernel w(z)¼ (1� jzj)1(jzj � 1). If w(�)
has bounded support, p is a lag truncation order; if w(�) has unbounded
support, all n� 1 lags in the sample fXtDgnt¼1 are used. Usually w(�)
discounts higher order lags. This will give better power than equal weight-

ing when jrml( j)j decays to zero as lag order j increases. This is typically the

case for most financial markets, where the recent events tend to have

bigger impact than the remote past events.

The tests M(m, l ) are an extension of Hong’s (1996) spectral density
tests for the adequacy of discrete-time linear dynamic models with

exogenous regressors. Extending the proof of Hong (1996), we can show

that for each given pair of positive integers (m, l ),

Mðm, lÞ!Nð0, 1Þ in distribution

under correct model specification, provided the lag truncation order

p� p(n) ! 1, p/n ! 0. Moreover, parameter estimation uncertainty in

ûu has no impact on the asymptotic distribution of M(m, l ). Although the

moments of the generalized residuals {Zt} are not the same as that of the
original data {XtD}, they are highly correlated. In particular, the choice of

(m, l )¼ (1, 1), (2, 2), (3, 3), (4, 4) is very sensitive to autocorrelations in

level, volatility, skewness, and kurtosis of {XtD}, respectively (cf. Diebold,

Gunther, and Tay 1998). Furthermore, the choice of (m, l )¼ (1, 2) and

(2, 1) is sensitive to ARCH-in-Mean and ‘‘leverage’’ effects, respectively.

Different choices of order (m, l ) can thus examine various dynamic

aspects of the underlying process. Like Q̂Qð jÞ, upper-tailed N(0, 1) critical

values are suitable for M(m, l ).
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Our omnibus and separate inference tests complement Gallant and

Tauchen’s (1996) popular EMM-based tests, which are also based on a

nonparametric approach. While we use the model transition density

directly, Gallant and Tauchen (1996) examine the simulation-based

expectation of an auxiliary semi-nonparametric score function under the
model distribution, which takes the value of zero under correct model

specification. Like our tests, the EMM tests are applicable to stationary

continuous/discrete-time univariate and multivariate models. In addition

to the minimum chi-square test for generic model misspecification, the

EMM approach also provides a spectrum of constructive individual

t-statistics, which, similar to our separate inference tests M(m, l ), are

informative in revealing possible sources of model misspecification.

In empirical financial studies, it is difficult to formally compare the
relative performance of non-nested models using most existing tests,

including EMM [e.g., Dai and Singleton (2000)]. In contrast, our non-

parametric approach makes it possible to compare the performance of

non-nested models via a metric measuring the distance of the model

generalized residuals from i.i.d. U[0, 1]. As the transition density can cap-

ture the full dynamics of {Xt}, our omnibus test has power against any

model misspecification when there is only one observable component in

Xt, as is the case of univariate diffusion models. In contrast, as pointed out
by Tauchen (1997, Section 4.3), the EMM minimum chi-square test may

lack power against some alternatives, because the semi-nonparametric

score may have zero expectation under the distribution of a mis-

specified model.

2. Finite Sample Performance

We now study the finite sample performance of the Q̂QðjÞ test for both

univariate and multivariate continuous-time models. For univariate mod-

els, we adopt the same simulation design as Pritsker (1998), who has

conducted a simulation study on Ait-Sahalia’s (1996) test. For multivari-

ate models, we focus on affine diffusions given their importance in the

existing asset pricing literature [see, e.g.,Duffie, Pan, and Singleton (2000)].

We choose the simulation design of Ait-Sahalia and Kimmel (2002), who
study the finite sample performance of parameter estimators for multi-

variate affine diffusion models using Ait-Sahalia’s (2002b) closed-form

likelihood expansion.

2.1 Univariate models
2.1.1. Size of the Q̂Qð jÞ test. To examine the size of Q̂Qð jÞ for univariate
models, we simulate data from the Vasicek (1977) model:

dXt ¼ kða�XtÞdtþ sdWt, ð13Þ
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where a is the long run mean and k is the speed of mean reversion. The

smaller k is, the stronger the serial dependence in {Xt}, and consequently,

the slower the convergence to the long run mean. We are particularly

interested in the impact of dependent persistence in {Xt} on the size of

Q̂Qð jÞ. Given that the finite sample performance of Q̂Qð jÞ may depend on
both the marginal density and dependent persistence of {Xt}, we follow

Pritsker (1998) to keep the marginal density unchanged while varying the

speed of mean reversion. This is achieved by changing k and s2 in the same

proportion. In this way, we can focus on the impact of dependent persist-

ence. We consider both low and high levels of dependent persistence and

adopt the same parameter values as Pritsker (1998): (k, a, s2)¼ (0.85837,

0.089102, 0.002185) and (0.214592, 0.089102, 0.000546) for the low and

high persistent dependence cases, respectively.
For each parameterization, we simulate 1000 data sets of a random

sample fXtDgnt¼1 at daily frequency for n¼ 250, 500, 1000, 2500, and

5500, respectively. These sample sizes correspond to about 1–22 years

of daily data. For each data set, we estimate the model parameters u¼
(k, a, s2)0 via the maximum likelihood estimation (MLE) method and

compute our Q̂Qð jÞ statistic using the generalized residuals of the

estimated Vasicek model. We consider the empirical rejection rates using

the asymptotic critical values (1.28 and 1.65) at the 10 and 5% levels,
respectively.

Figures 1a–d report the empirical sizes of Q̂Qð jÞ, j¼ 1, . . . , 20, for n¼
250, 500, 1000, 2500, and 5500. Figures 1a and c (b and d ) show the

rejection rates of Q̂Qð jÞ at the 10 and 5% levels under a correct Vasicek

model with low (high) persistence of dependence. Overall, Q̂Qð jÞ has rea-
sonable sizes for sample sizes as small as n¼ 250 (i.e., about one year of

daily data), at both the 10 and 5% levels. The most striking difference from

Ait-Sahalia’s (1996) test is that the impact of dependent persistence on the
size of Q̂Qð jÞ is minimal: the sizes of Q̂Qð jÞ are virtually the same in both the

low and high persistent cases. In contrast, under the same simulation

setting, Pritsker (1998) finds that Ait-Sahalia’s (1996) test shows strong

overrejection under a correct Vasicek model even when n¼ 5500, and it

becomes worse when dependence becomes stronger.

2.1.2. Power of the Q̂Qð jÞ test. To investigate the power of Q̂QðjÞ for

univariate models, we simulate data from four popular univariate

diffusion processes and test the null hypothesis that the data is generated
from a Vasicek model. The four processes are:

1. The CIR model:

dXt ¼ kða�XtÞdtþ s
ffiffiffiffiffi
Xt

p
dWt, ð14Þ

where ðk,a,s2Þ ¼ ð0:89218, 0:090495, 0:032742Þ:
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Figure 1
The finite sample size and power performance of Q-test for univariate diffusions

To examine the size of Q̂Qð jÞ, we simulate 1000 data sets from the Vasicek model, dXt¼k (a�Xt) dtþs

dWt, at daily frequency for n¼ 250, 500, 1000, 2500, and 5500, respectively. We choose (k, a,
s2)¼ (0.85837, 0.089102, 0.002185) and (0.214592, 0.089102, 0.000546) for the low and high persistent
dependence cases, respectively. For each data set, we estimate u¼ (k, a, s2)0 via MLE and compute Q̂Qð jÞ
statistic using the generalized residuals of the estimated Vasicek model. We consider the empirical
rejection rates using the asymptotic critical values (1.28 and 1.65) at the 10 and 5% levels, respectively.
Figures 1a and c (b and d) report the rejection rates of Q̂Qð jÞ at the 10 and 5% levels under a correct
Vasicek model with low (high) persistence of dependence. To examine the power of Q̂Qð jÞ, we simulate 500
data sets from each of the four alternatives: the CIR, Ahn and Gao, CKLS, and Ait-Sahalia’s nonlinear
drift model, at daily frequency for n¼ 1000, 2500, and 5500, respectively. For each data set, we estimate a
Vasicek model and use its generalized residuals to compute Q̂Qð jÞ. Figures 1e–h report the power of Q̂Qð jÞ
at the 5% level using asymptotic critical values against the CIR, Ahn and Gao, CKLS, and Ait-Sahalia’s
nonlinear drift model, respectively.
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2. Ahn and Gao’s (1999) Inverse-Feller model:

dXt ¼ Xt½k�ðs2 � kaÞXt�dtþ sX
3=2
t dWt, ð15Þ

where ðk,a,s2Þ ¼ ð0:181, 15:157, 0:032742Þ:
3. CKLS model:

dXt ¼ kða�XtÞdtþ sX
r
t dWt, ð16Þ

where ðk,a,s2, rÞ ¼ ð0:0972, 0:0808, 0:52186, 1:46Þ:
4. Ait-Sahalia’s (1996) nonlinear drift model:

dXt ¼ ða�1X
�1
t þ a0 þ a1Xt þ a2X

2
t Þdtþ sX

r
t dWt, ð17Þ

where (a�1, a0, a1, a2, s
2, r)¼ (0.00107, �0.0517, 0.877, �4.604,

0.64754, 1.50).

The parameter values for the CIRmodel are taken from Pritsker (1998).

For the other three models, which Pritsker (1998) does not consider, the

parameter values are taken from Ait-Sahalia’s (1999) estimates. For each
of these four alternatives, we generate 500 realizations of a random sample

fXtDgnt¼1, where n¼ 1000, 2500, and 5500, respectively. For the CIR and

Ahn and Gao’s models, we simulate data from the model transition

density, which has a closed-form. For the CKLS and Ait-Sahalia’s non-

linear drift models whose transition density has no closed form, we

simulate data using the convenient Milstein scheme. To reduce discretiza-

tion bias, we simulate five observations each day and sample the data at

daily frequency.
For each data set, we estimate a Vasicek model and use its generalized

residuals to compute Q̂QðjÞ. Figures 1e–h report the power of Q̂Qð jÞ at the
5% level using asymptotic critical values for n¼ 1000, 2500, and 5500.13

The test has overall good power in detecting misspecification of the

Vasicek model against the four alternatives. When n¼ 5500, Q̂QðjÞ rejects
the CIR model with a power of about 90%. For comparison, Pritsker

(1998), under the same simulation setting, reports that the size-corrected

power of Ait-Sahalia’s (1996) test at the 5% level in detecting the Vasicek
model against the CIR alternative is about 38% when n¼ 5500. Moreover,

Q̂QðjÞ has virtually unit power against the other three alternatives when

n¼ 5500. It appears that the transition density-based test is indeed more

powerful than the marginal density-based test.

2.2 Multivariate models

For multivariate models, we cannot directly use the probability integral

transform {Zt(u)} defined in Equation (5) for univariate models. Instead,

13 The results using empirical critical values are very similar and are available from the authors
upon request.
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we have to conduct the probability integral transform for each individual

observable component of Xt, conditioning on an appropriate information

set. If the transformed series is not i.i.d. U[0, 1] for some observable com-

ponents of Xt, there then exists evidence of model misspecification.

Suppose we have a set of discrete-time observations of an N-dimen-
sional continuous-time process Xt, fXi;tDgnt¼1, i ¼ 1, . . . , N. Following

Diebold, Hahn, and Tay (1999), we can partition the model-implied joint

transition density of the N state variables (X1,tD, . . . , XN,tD) at time tD

into the products of N conditional densities,

pðX1;tD, . . . ,XN;tD;tDjIðt�1ÞD, ðt� 1ÞD, uÞ

¼
YN
i¼1

pðXi;tD;tDjXi�1;tD, . . . ,X1;tD, Iðt�1ÞD, ðt� 1ÞD, uÞ,

where the conditional density p(Xi,tDjXi� 1,tD, . . . , X1, tD, I(t�1)D, (t� 1)D,
u) of the i-th component Xi,tD depends on not only the past

information I(t� 1)D but also other contemporaneous variables fXl;tDgi�1
l¼1.

We then transform Xi,tD via its corresponding model-implied transition

density

Z
ð1Þ
i;t ðuÞ�

Z Xi;tD

�1
pðx; tDjXi�1;tD, . . . ,X1;tD, Iðt�1ÞD, ðt�1ÞD, uÞdx,

i ¼ 1, . . . ,N: ð18Þ

This approach produces N generalized residual samples,

fZð1Þ
i;t ðuÞg

n
t¼1, i ¼ 1, . . . ,N, which we can use to evaluate the performance

of a given multivariate model in capturing the dynamics of Xt. For each i,

the series fZð1Þ
i;t ðuÞg

n
t¼1 should be i.i.d. U [0, 1] when u¼ u0 under correct

model specification.

There are N! ways of factoring the joint transition density of Xt and it is
possible that some particular sequence of conditioning partition may lead

to low or no power for the test. While we only consider one of such N!

possibilities here, in practice there may be some natural ordering given the

kind of questions to be addressed. For example, in term structure model-

ing, the transition density of long term bond yields could be conditioned

on contemporaneous and past short term yields if one is interested in

inferring the dynamics of long bond yields from short bond yields. This is

especially appropriate when one is interested in the impact on long bond
yields of a sudden policy change by the Fed on the spot rates.

Examination of generalized residuals for each observable component in

Xt will reveal useful information about how well a multivariate model can

capture the dynamics of each component in Xt. To assess the overall

performance of the model in capturing the joint dynamics of Xt, we can

combine the N individual generalized residuals fZð1Þ
i;t ðuÞg

n
t¼1 in a suitable
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way to generate a new sequence, which we may call the combined general-

ized residuals of a multivariate model:

Zð2ÞðuÞ

� Z
ð1Þ
1;1ðuÞ, . . . ,Z

ð1Þ
N;1ðuÞ,Z

ð1Þ
1;2ðuÞ, . . . ,Z

ð1Þ
N;2ðuÞ, . . . ,Z

ð1Þ
1;nðuÞ, . . . ,Z

ð1Þ
N;nðuÞ

h i0
,

ð19Þ

The series fZð2Þ
t ðuÞgnNt¼1 is also i.i.d. U[0, 1] for u¼ u0 under correct model

specification and this property can be used to check the overall perfor-

mance of the multivariate model.

2.2.1. Size of the Q̂Qð jÞ test. To examine the size of Q̂QðjÞ for multivariate
models, we simulate data from a three-factor Vasicek model:

d

X1t

X2t

X3t

264
375¼

k11 k12 k13

k21 k22 k23

k31 k32 k33

264
375 a1�X1t

a2�X2t

a3�X3t

264
375dtþ s11 0 0

0 s22 0

0 0 s33

264
375d W1t

W2t

W3t

264
375: ð20Þ

Following Ait-Sahalia and Kimmel (2002), we set (k11, k21, k22, k31, k32,

k33, s11, s22, s33)
0 ¼ (0.50, �0.20, 1.00, 0.10, 0.20, 2.00, 1.00, 1.00, 1.00)0,

and (k12, k13, k23, a1, a2, a3)
0 ¼ (0, 0, 0, 0, 0, 0)0. We simulate 1000 data sets

of the random sample fXtDgnt¼1 at the monthly frequency for n¼ 250, 500,

and 1000, respectively. These sample sizes correspond to about 20–100

years of monthly data.14 For each data set, we use MLE to estimate all
model parameters in Equation (20), with no restrictions on the k matrix

and intercept coefficients. We then compute the Q̂Qð jÞ statistic using the

generalized residuals of the estimated three-factor Vasicek model.15 The

empirical rejection rates using the asymptotic critical values (1.28 and

1.65) at the 10 and 5% levels are considered.

Figure 2 reports the empirical sizes of Q̂Qð jÞ, j¼ 1, . . . , 20, for n¼ 250,

500, and 1000, respectively. Figures 2a–d show the rejection rates of Q̂Qð jÞ
at the 10% level for three individual and combined generalized residuals,
while Figures 2e–h report the rejection rates at the 5% level. Overall, Q̂Qð jÞ
has good sizes at both the 10 and 5% levels for sample sizes as small as

n¼ 250 (i.e., about 20 years of monthly data). Our results show that the

good finite sample size performance of Q̂Qð jÞ in the univariate models

carries over to the multivariate models as well.

14 We simulate 100 observations each month and sample the data at the monthly frequency. We choose the
monthly sampling frequency to match our empirical application to multivariate models below, where we
use monthly data of U.S. Treasury yields.

15 Both the likelihood estimation and the probability integral transforms are done in closed-form, because
the transition density of Xt in (20) is multivariate Gaussian. See Ait-Sahalia (2002b) for more details.
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Figure 2
The finite sample size performance of Q-test for multivariate affine diffusions
To examine the size of Q̂QðjÞ, we simulate 1000 data sets from a three-factor Vasicek model at monthly
frequency for n¼ 250, 500, and 1000, respectively. For each data set, we estimate model parameters via

MLE and compute Q̂QðjÞ statistic using the generalized residuals of the estimated Vasicek model. We
consider the empirical rejection rates using the asymptotic critical values (1.28 and 1.65) at the 10 and 5%
levels, respectively. Figures 2a–d report the rejection rates of Q̂QðjÞ at the 10% level for three individual and
combined generalized residuals, respectively, while Figures 2e–h report the rejection rates of Q̂Qð jÞ at
the 5% level.
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2.2.2. Power of the Q̂QðjÞ test. To investigate the power of Q̂Qð jÞ for multi-

variate models, we simulate data from three other canonical affine diffu-

sions and test the null hypothesis that the data is generated from the

Vasicek model in Equation (20). We choose the same parameter values

as Ait-Sahalia and Kimmel (2002) in each of the following three canonical
affine diffusions:

1. A1 (3):

d

X1t

X2t

X3t

264
375 ¼

k11 0 0

k21 k22 k23

k31 k32 k33

264
375 a1 �X1t

�X2t

�X3t

264
375dt

þ
X

1=2
1t 0 0

0 ð1þ b21X1tÞ1=2 0

0 0 ð1þ b31X1tÞ1=2

2664
3775d

W1t

W2t

W3t

264
375,

ð21Þ

where (k11, k22, k32, k33, a1)¼ (0.50, 2.00, �0.10, 5.00, 2.00) and

(k21, k23, k31, b21, b31)¼ (0, 0, 0, 0, 0).

2. A2 (3):

d

X1t

X2t

X3t

264
375¼

k11 k12 0

k21 k22 0

k31 k32 k33

264
375 a1�X1t

a2�X2t

�X3t

264
375dt

þ
X

1=2
1t 0 0

0 X
1=2
2t 0

0 0 ð1þb31X1tþb32X2tÞ1=2

2664
3775d

W1t

W2t

W3t

264
375, ð22Þ

where (k11, k22, k33, a1, a2)¼ (0.50, 2.00, 5.00, 2.00, 1.00) and (k12,

k21, k31, k32, b31, b32)¼ (0, 0, 0, 0, 0, 0).

3. A3 (3):

d

X1t

X2t

X3t

24 35 ¼
k11 k12 k13

k21 k22 k23

k31 k32 k33

264
375 a1 �X1t

a2 �X2t

a3 �X3t

264
375dt

þ
X

1=2
1t 0 0

0 X
1=2
2t 0

0 0 X
1=2
3t

2664
3775d

W1t

W2t

W3t

264
375, ð23Þ

where (k11, k22, k33, a1, a2, a3)¼ (0.50, 2.00, 1.00, 2.00, 1.00, 1.00)

and (k12, k13, k21, k23, k31, k32)¼ (0, 0, 0, 0, 0, 0).
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For each of alternatives (21)–(23), we generate 500 data sets of the

random sample fXtDgnt¼1, for n¼ 250, 500, and 1000, respectively at the

monthly sample frequency. For each data set, we estimate the Vasicek

model in Equation (20) via MLE and use its generalized residuals to

compute Q̂Qð jÞ. Again, we make no restrictions on the k matrix and
intercept coefficients in our estimation.

Figures 3a–d report the power of Q̂QðjÞ under the A1 (3) alternative at

the 5% level using asymptotic critical values for three individual and

combined generalized residuals, respectively, for n¼ 250, 500, and 1000.

The test based on the generalized residuals of the first component X1t

has excellent power in detecting misspecification in this component,

which is non-Gaussian under A1 (3). The power increases with sample

size n and approaches unity when n¼ 1000. One possible reason for
such excellent performance is that the transition density of X1t, which is

noncentral Chi-square, deviates more significantly from the Gaussian

distribution at the monthly sample interval than at daily sample

interval. Interestingly, the powers of the test based on the generalized

residuals of the other two (Gaussian) individual components are close

to 5%, which shows that these individual tests do not overreject

correctly specified individual components. On the other hand, the

overall Q̂Qð jÞ test based on the combined generalized residuals has
power against the Vasicek model under the A1 (3) alternative and its

power increases with the sample size n. But the power of the overall

test is smaller than that of the test based on the first component,

apparently due to the fact that two-thirds of the combined generalized

residuals are approximately i.i.d. U[0, 1]. Interestingly, the power of the

test based on the combined generalized residuals is significantly higher

at lag orders that are multiples of 3 (the dimension of Xt), displaying a

clear periodic pattern. This is apparently due to the way in which the
combined generalized residuals are constructed: at a lag order j that

is multiples of 3, the generalized residuals ðẐZð2Þ
t , ẐZ

ð2Þ
t�jÞ correspond to

the same individual component in Xt, thus giving stronger serial

dependence when the observations are from the misspecified first

component X1t. Consequently, it is easier to reject the three-factor

Vasicek model at these lags.

Finally, we observe that the power patterns of the Q̂Qð jÞ test against the
Vasicek model under both the A2 (3) alternative (Figures 3e–h) and the
A3 (3) alternative (Figures 3i–l ) are very similar to those under the A1 (3)

alternative.

Overall, our simulation study shows that with the use of the probability

integral transform and the boundary-modified kernel density estimator,

our nonparametric Q̂QðjÞ test performs rather well for both univariate and

multivariate models, even for highly persistently dependent data with

sample sizes often encountered in empirical finance.

The Review of Financial Studies / v 18 n 1 2005

56

 at C
ornell U

niversity L
ibrary on N

ovem
ber 22, 2013

http://rfs.oxfordjournals.org/
D

ow
nloaded from

 

http://rfs.oxfordjournals.org/
http://rfs.oxfordjournals.org/


3. Applications to Spot Interest Rate Models

We first use our tests to reexamine the spot rate models considered in

Ait-Sahalia (1996), using the same data set: daily Eurodollar rates from

June 1, 1973 to February 25, 1995, with a total of 5505 observations.

Ait-Sahalia (1996) provides detailed summary statistics for the data.
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Figure 3
The finite sample power performance of Q-test for multivariate affine diffusions
To examine the power of Q̂Qð jÞ, we simulate 500 data sets from three canonical trivariate affine diffusions:
A1 (3), A2 (3), and A3 (3), at monthly frequency for n¼ 250, 500, and 1000, respectively. For each data set,
we estimate a three-factor Vasicek model and use its generalized residuals to compute Q̂Qð jÞ. Figures 3a–d
report the power of Q̂Qð jÞ at the 5% level using asymptotic critical values against A1 (3) for three individual
and combined generalized residuals, respectively. Figures 3e–h (i–l) report the power of Q̂Qð jÞ at the 5%
level using asymptotic critical values against A2 (3) [A3 (3)] for three individual and combined generalized
residuals, respectively.
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We consider five popular models: the Vasicek, CIR, Ahn and Gao,

CKLS, and Ait-Sahalia’s nonlinear drift models, as given in Equations

(13)–(17). For each model, we estimate parameters via MLE. For the

Vasicek, CIR, and Ahn and Gao’s models, the model likelihood function

has a closed-form. For the CKLS and Ait-Sahalia’s nonlinear drift models,
we use Ait-Sahalia’s (2002a) Hermite expansion to obtain a closed-

form approximation for the model likelihood. Table 1 gives parameter

estimates.

Figure 4a shows that the Q̂Qð jÞ statistics for lag order j from 1 to 20 for

the five models range from 349.81 to 1574.02. Compared to upper-tailed

N(0, 1) critical values (e.g., 2.33 at the 1% level), these huge Q̂Qð jÞ statistics
are overwhelming evidence that all five models are severely misspecified.

The Vasicek model performs the worst, with the Q̂Qð jÞ values around 1400
for all lags from 1 to 20. This is probably due to its restrictive assumption

of constant volatility. The CIR model dramatically reduces the Q̂Qð jÞ
values to about 620, and the goodness of fit is further improved, in their

order, by Ahn and Gao’s model, Ait-Sahalia’s nonlinear drift model, and

the CKLS model. The latter performs the best, with the Q̂Qð jÞ values

around 400. This suggests that level effect is important for modeling interest

rate dynamics, but in contrast to the findings by Ait-Sahalia (1996) and

Stanton (1997), nonlinear drift does not improve goodness of fit.
Although some models perform relatively better than others, the

extremely large Q̂Qð jÞ statistics indicate that none of the five univariate

diffusion models adequately captures the interest rate dynamics. There is a

Table 1
Parameter estimates for univariate diffusion models of spot interest rate

Parameters Vasicek CIR Ahn & Gao CKLS Nonlinear drift

a�1 0.0 0.0 0.0 0.0 0.0001
(0.0033)

a0 0.13
(0.034)

0.096
(0.033)

0.0 0.04
(0.0196)

�0.02
(0.0138)

a1 �1.59
(0.380)

�1.27
(0.474)

0.94
(0.281)

�0.62
(0.3131)

1.47
(0.826)

a2 0.0 0.0 �12.60
(5.04)

0.0 �15.41
(7.269)

s 0.064
(0.0006)

0.19
(0.0018)

2.17
(0.020)

1.48
(0.080)

1.50
(0.080)

r 0.0 0.5 1.5 1.35
(0.0214)

1.36
(0.021)

Log-likelihood 22503.6 23605.1 24364.1 24385.7 24388.5

This table reports parameter estimates for five univariate diffusion models (13)–(17) of spot interest rate
using daily Eurodollar interest rates of Ait-Sahalia (1996) from June 1, 1973 to February 25, 1995. For
convenience, we write each model as a special case of Ait-Sahalia’s nonlinear drift model. Therefore, we
have, Vasicek: dXt¼ [a0þa1Xt]dtþsdWt; CIR: dXt ¼ ½a0 þ a1Xt�dtþ s

ffiffiffiffiffi
Xt

p
dWt; Ahn and Gao:

dXt ¼ ½a1Xt þ a2X
2
t �dtþ sX

r
t dWt; CKLS: dXt ¼ ½a0 þ a1Xt�dtþ sX

r
t dWt; and the nonlinear drift

model: dXt ¼ ½a�1X
�1
t þ a0 þ a1Xt þ a2X

2
t �dtþ sX

r
t dWt. Parameter estimates are obtained using the

maximum likelihood method: the model likelihood function is used if available; otherwise, the Hermite
approximation of the model likelihood function is used. Standard errors are given in the parentheses.
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Figure 4
The empirical performance of univariate spot rate models and multivariate affine term structure models
Figure 4a reports the Q̂Qð jÞ statistics for lag order j from 1 to 20 for the Vasicek, CIR, Ahn and Gao,
CKLS, and Ait-Sahalia’s nonlinear drift models estimated using daily Eurodollar rates from June 1, 1973
to February 25, 1995. Figure 4b plots the kernel density estimators of the generalized residuals for the
Vasicek and CKLS models (all other models give similar results). Figures 4c–f report the Q̂Qð jÞ statistics
for the combined and three individual generalized residuals, respectively for four completely affine
models, A0 (3), A1 (3), A2 (3), and A3 (3), estimated using monthly 6-month, 2- and 10-year zero-coupon
Treasury yields from January 1952 to December 1998. The essentially affine models have Q̂Qð jÞ statistics
that are similar to that of their completely affine counterparts.
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long way to go before obtaining an adequate specification from any of

these diffusion models. Our findings demonstrate the power of our tests:

they overwhelmingly reject all diffusion models, including the CKLS and

the nonlinear drift model, which Ait-Sahalia’s (1996) marginal density-

based test fails to reject using the empirical critical values in Pritsker
(1998).

Next, we explore possible reasons for the rejection of the univariate

diffusion models by separately examining the i.i.d. and U [0, 1] properties

of their generalized residuals fẐZtgnt¼1. In Figure 4b, we plot the kernel

density estimators of the generalized residuals fẐZtgnt¼1 for the Vasicek and

CKLS models (all other models give similar results). These density esti-

mates all have peaks near 0.5, which indicates that too many observations

fall into the area near the mean of the interest rate level than predicted by
each model. In other words, the model-implied probability of the interest

rates around the mean is always smaller than that implied by the true data

generating process. Obviously, all five models cannot adequately capture

the kurtosis of Eurodollar interest rates. This could be due to under-

estimating the speed of mean reversion (if any) or overestimating the

magnitude of volatility.

To further examine how well the univariate diffusion models capture

various dynamic aspects of Eurodollar interest rates, we report, in Table 2,
various separate inference statistics M(m, l ) defined in Equation (12) for

each model. We find that all five models fail to capture some of the most

important features of fẐZtgnt¼1. The largeM(1, 1) statistics indicate that all

univariate diffusion models fail to satisfactorily capture the conditional

mean dynamics of fẐZtgnt¼1. In particular, the nonlinear drift model actu-

ally underperforms the linear drift models. TheM(2, 2) statistics show that

the univariate diffusion models perform rather poorly in capturing the

conditional variance of fẐZtgnt¼1, although introducing level effect
substantially reduces the M(2, 2) statistics from 1500 for the Vasicek

model to about 700 for the CKLS model. The M(3, 3) and M(4, 4) statis-

tics also show that the univariate diffusion models perform poorly in

Table 2
Separate inference statistics for spot rate models

Model M(1,1) M(1,2) M(2,1) M(2,2) M(3,3) M(4,4)

Vasicek 40.74 12.34 50.20 1540.37 115.74 997.45
CIR 45.64 4.76 28.23 985.28 139.16 719.24
Ahn & Gao 76.75 4.48 6.57 750.31 177.56 503.83
CKLS 72.78 4.94 7.55 682.35 170.41 485.62
Nonlinear drift 70.68 3.14 9.10 686.09 170.50 487.32

This table reports the separate inference statistics M(m, l ) in (12) for the five spot rate models. The
asymptotically normal statisticM(m, l ) can be used to test whether the cross-correlation between the m-th
and l-th moments of {ZtD} is significantly different from zero. The choice of (m, l)¼ (1, 1), (2, 2), (3, 3),
and (4, 4) is sensitive to autocorrelations in mean, variance, skewness, and kurtosis of {XtD}, respectively.
We only report results for lag truncation order p¼ 20; the results for p¼ 10 and 30 are rather similar.
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capturing the conditional skewness and kurtosis of fẐZtgnt¼1. The

univariate diffusion models, especially the CKLS and Ait-Sahalia’s non-

linear drift models, however, provide reasonable description of ARCH-in-

Mean and ‘‘leverage’’ effects as measured by M(1, 2) and M(2, 1).

Overall, we find that the five univariate diffusion models are quite
restrictive in capturing both the unconditional distribution and the

dependence structure of the model generalized residuals fẐZtgnt¼1. Of

course, this may not be surprising given the overwhelming evidence of

stochastic volatility [e.g., Andersen and Lund (1997)] and jumps [e.g.,

Johannes (2004) and Das (2002)] in interest rates. We also examine the

performance of various discrete-time models with GARCH, regime-

switching, and jump components to capture volatility clustering, mean

shifts, and infrequent large movements in interest rate data. These models
provide some improvements over the univariate diffusion models. For

example, regime switching and jumps help capture the heavy tail or excess

kurtosis of Eurodollar interest rates, and GARCH significantly improves

the modeling of interest rate volatility. Despite these improvements, how-

ever, even the most sophisticated model that includes GARCH, regime

switching, and jumps together still cannot adequately capture the spot rate

dynamics. This model has a Q̂Qð jÞ statistic as large as 400.

4. Applications to Affine Term Structure Models

It is important to bear in mind that the Eurodollar rates considered above

are encumbered with all kinds of ‘‘money-market’’ distortions that are

largely absent from existing theoretical term structure models. To further

illustrate the power of our tests and to better understand term structure

dynamics, we next study some popular multivariate affine term structure

models using yields on zero coupon bonds. These models provide a nice

balance between richness of model specification and tractability. Assum-

ing that the state variables follow affine diffusions, affine models can
generate rich term structure dynamics while still allowing closed-form

pricing for a wide variety of fixed-income securities [e.g., Duffie, Pan,

and Singleton (2001), and Chacko and Das (2002)]. As a result, affine

models have become probably the most widely studied term structure

models in the literature.16

4.1 Affine term structure models

In affine models, it is assumed that the spot rate Rt is an affine function of

N latent state variables Xt¼ [X1,t, . . . , XN,t]
0:

Rt ¼ d0 þ d0Xt; ð24Þ

16 For excellent reviews of the literature on affine models, see Dai and Singleton (2002) and Piazzesi (2002).
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where d0 is a scalar and d is an N � 1 vector. In the absence of arbitrage

opportunities, the time t-price of a zero-coupon bond that matures at

tþ tm (tm> 0) equals

Pðt; tmÞ ¼ E
Q
t

�
exp

	
�
Z tþtm

t

Rsds


�
,

where the expectation E
Q
t is taken under the risk-neutral measureQ. Thus,

the whole yield curve is determined by Xt, which is assumed to follow an

affine diffusion under the risk-neutral measure:

dXt ¼ ~kk
�
~uu�Xt

�
dtþ �Std ~WWt, ð25Þ

where ~WWt is an N � 1 independent standard Brownian motion under
measure Q, ~kk and � are N � N matrices, and ~uu is an N � 1 vector. The

matrix St is diagonal with the (i, i)-th element

StðiiÞ � ½ai þ b0
iXðtÞ�1=2, i ¼ 1, . . . ,N, ð26Þ

where ai is a scalar and bi is an N � 1 vector.

Under assumptions (24)–(26), the yields of zero coupon bonds,
YðXt, tmÞ�� 1

tm
logPðXt, tmÞ, are an affine function of the state variables:

YðXt, tmÞ ¼
1

tm
½�AðtmÞ þ BðtmÞ0Xt�,

where the scaler function A(�) and the N � 1 vector-valued function B(�)
either have a closed-form or can be easily solved via numerical methods.

Completely affine models assume that the market prices of risk

Lt ¼ Stl1, ð27Þ

where l1 is anN� 1 parameter vector. This implies that the compensation

for risk is a fixed multiple of the variance of risk, a restriction that makes it

difficult to replicate some stylized facts of historical excess bond returns.

As a result, completely affine models provide poor forecasts of future
bond yields and forecast errors are large when the slope of the term

structure is steep. Duffee (2002) extends completely affine models to

essentially affine models by assuming

Lt ¼ Stl1 þ S�
t l2Xt, ð28Þ

where S�
t is an N � N diagonal matrix with the (i, i)-th element

S�
tðiiÞ ¼

ðai þ b0
iXtÞ�1=2, if infðai þ b0

iXtÞ> 0,

0, otherwise,
i ¼ 1, . . . ,N,

(

and l2 is an N � N matrix.
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Under both specifications of Lt in Equations (27) and (28), Xt is also

affine under the physical measure:

dXt ¼ ~kkð~uu�XtÞdtþ �StLtdtþ �StdWt,

where Wt is an N � 1 standard Brownian motion under the physical

measure.

Dai and Singleton (2000) greatly simplify the econometric analysis of

affine models by providing a systematic scheme that classifies all

admissible N-factor affine models into Nþ 1 subfamilies, denoted as Am

(N), where m 2 {0, 1, . . . , N} is the number of state variables that affect

the instantaneous variance of Xt. They also introduce a canonical

representation for Am (N), which has the most flexible specification within
each subfamily, as it either nests or is equivalent to (under an invariant

transform) all the models in Am (N).

We follow Dai and Singleton (2000) and Duffee (2002) to consider the

canonical forms of the three-factor completely affine models Am (3),

m¼ 0, 1, 2, 3, and essentially affine models Em (3), m¼ 0, 1, 2.17 As the

transition density of an affine model generally has no closed-form,MLE is

infeasible. Following Duffee (2002), we estimate model parameters via

Quasi-MLE, which is rather convenient for affine models, because the
conditional mean and variance ofXt have a closed-form [see Duffee (2002)

for details].18

4.2 Dynamic probability integral transform for affine models

We now discuss how to apply our tests to multivariate affine term

structure models. The key is how to compute suitable generalized residuals

for these models.

Suppose we have a time series of observations on the yields of N zero-

coupon bonds with different maturities, fYi;tDgnt¼1, i¼ 1, . . . ,N.19 Assum-
ing that the yields are observed without error, given a parameter estimator

ûu, we can solve for the underlying state variables fXi;tDgnt¼1, i¼ 1, . . . , N.

To examine whether the model transition density p(XtD, tDjI(t�1)D,

(t�1)D, u) of XtD given I(t�1)D� {X(t�1)D, . . . , XD} under the physical

measure completely captures the dynamics of Xt, we can test whether the

17 In the canonical representation, � is normalized to the identity matrix and the state vector Xt is ordered so
that the first m elements of Xt affect the instantaneous variance of Xt. Setting ai¼ 0 for i¼ 1, . . . , m, and
ai¼ 1 for i¼mþ 1, . . . N, we have StðiiÞ ¼ X

1=2
it and S�

tðiiÞ ¼ 0 for i¼ 1, . . . , m, and St(ii)¼ (1þb0
i Xt)

1/2

and S�
tðiiÞ ¼ ð1þ b0

iXtÞ�1=2
for i¼mþ 1, . . . , N, where bi¼ (bi1, . . . , bim, 0, . . . , 0)

0.

18 We could also use other methods, such as the EMM method of Gallant and Tauchen (1996), the
approximated MLE of Ait-Sahalia and Kimmel (2002) and Duffie, Pedersen, and Singleton (2003), the
simulated MLE of Brandt and Santa-Clara (2002), and the empirical characteristic function method of
Singleton (2001) and Jiang and Knight (2002).

19 We arrange the yields so that the i-th bond has shorter maturity than the (iþ 1)-th bond.
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probability integral transforms of fYi; tDgnt¼1, i¼ 1, . . . , N, with respect to

the model transition density is i.i.d. U[0, 1].

There are different ways to conduct the probability integral transform

for affine models. Similar to our simulation study, we partition the joint

density of the N different yields (Y1,tD, . . . , YN,tD) at time tD under the
physical measure into the products of N conditional densities,

pðY1;tD, . . . ,YN;tD, tDjIðt�1ÞD, ðt�1ÞD, ûuÞ

¼
YN
i¼1

pðYi;tD, tDjYi�1;tD, . . . ,Y1;tD, Iðt�1ÞD, ðt�1ÞD, ûuÞ,

where the conditional density pðY1;tD, . . . ,YN;tD, tDjIðt�1ÞD, ðt�1ÞD, ûuÞ
of Yi,tD depends on not only the past information I(t�1)D but also

fYl;tDgi�1
l¼1, the contemporaneous yields with shorter maturities.20

We then transform the yield Yi,tD via its corresponding model-implied

transition density

Z
ð1Þ
i;t ðûuÞ�

Z Yi;tD

0

pðY1;tD, . . . ,YN;tD, tDjIðt�1ÞD; ðt� 1ÞD, ûuÞ

i ¼ 1, . . . ,N:

ð29Þ

This approach produces N generalized residual samples, fZð1Þ
i;t ðûuÞg

n
t¼1,

i¼ 1, . . . , N. For each i, the sample fZð1Þ
i;t ðûuÞg

n
t¼1 is approximately i.i.d.

U[0, 1] under correct model specification.21

We can also combine the N generalized residuals fZð1Þ
i;t ðûuÞg

n
t¼1 in

Equation (29) to obtain the combined generalized residuals of an affine
model:

Zð2ÞðûuÞ

�
h
Z

ð1Þ
1;1ðûuÞ, . . . ,Z

ð1Þ
N;1ðûuÞ,Z

ð1Þ
1;2ðûuÞ, . . . ,Z

ð1Þ
N;2ðûuÞ, . . . ,Z

ð1Þ
1;nðûuÞ, . . . ,Z

ð1Þ
N;nðûuÞ

i0
:

ð30Þ
The combined generalized residuals fZð2Þ

t ðûuÞgnNt¼1 in Equation (30) is

approximately i.i.d. U[0, 1] under correct model specification and this

property can be used to check the overall performance of an
affine model. In contrast, each individual sample of generalized residuals

fZi;tðûuÞgnt¼1 in Equation (29) can be used to check the adequacy of an

20 As noted earlier, there are N! ways of factoring the joint transition density of yields with different
maturities. In our application, we let the transition density of the yields of long term bonds depend on
the contemporaneous yields of shorter maturity bonds, because the short-end of the yield curve is
generally more sensitive to various economic shocks and is more volatile.

21 We can also compute the probability integral transform of the yields Yi,tD, i¼ 1, . . . , N, with respect to
pðy, tDjIðt�1ÞD, ðt�1ÞD, ûuÞ, the model-implied conditional density of Yi,tD given only I(t�1)D under the
physical measure. This approach, however, ignores the information on the joint distribution among bond
yields with different maturities. Results (not reported here) show that such generalized residuals are
further away from i.i.d. U[0, 1] than fZð1Þ

i;t ðûuÞg. This indicates that the joint transition density of yields
with different maturities provides additional information on term structure dynamics.
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affine model in capturing the dynamics of each specific yield, as has been

illustrated in our simulation study.

Because the transition density has no closed form for most affine

models, we use the simulation methods of Pedersen (1995) and Brandt

and Santa-Clara (2002) to obtain an approximation for the transition
density. This method is applicable to not only affine diffusions, but also

other general multivariate diffusions. We could use other approximation

methods mentioned earlier.

4.3 Empirical results
We now evaluate the performance of affine models in capturing the joint

dynamics of U.S. Treasury yields during the second half of the last

century. We use the same data as Duffee (2002): monthly yields on zero-

coupon bonds with 6-month, 2- and 10-year maturities from January 1952

to December 1998. The zero-coupon bond yields are interpolated from

coupon bond prices using the method of McCulloch and Kwon (1993),

whose sample is extended by Bliss (1997) beyond February 1991. Assum-

ing that the three yields are observed without error, we use them to
estimate model parameters via Quasi-MLE. For most models, our esti-

mates are very close to those of Duffee (2002), who includes three other

yields (observed with measurement error). The results on model perform-

ance obtained from both Duffee’s (2002) estimates and ours are qualita-

tively the same, although our estimates generally provide better model

performance in terms of the Q̂Qð jÞ criterion. Parameter estimates for the

canonical forms of seven completely and essentially affine models are

reported in Tables 3 and 4. The only restrictions on model parameters
are those required by the canonical form.

Based on parameter estimates in Tables 3 and 4, we calculate the

generalized residuals fZð1Þ
i;t ðûuÞg

n
t¼1 in Equation (29) for the 6-month

(i¼ 1), 2-year (i¼ 2) and 10-year (i¼ 3) yields, and the combined general-

ized residuals fZð2Þ
t ðûuÞgnNt¼1 in Equation (30). Dai and Singleton (2000)

point out that it is difficult to formally assess the relative goodness of fit of

non-nested classes of affine models using existing methods. One advan-

tage of our approach is that the performance of non-nested models can be
compared by a metric measuring the closeness of their generalized

residuals to i.i.d. U[0, 1].

We first examine the overall performance of each model via the Q̂Qð jÞ
statistic based on the combined generalized residuals fZð2Þ

t ðûuÞgnNt¼1 in

Equation (30), which is shown in Figure 4c.22 Although some models

perform relatively better than others, Q̂Qð jÞ overwhelmingly rejects all

affine models at conventional significance levels. Among the seven affine

22 For ease of exposition, we only report the Q̂QðjÞ statistics ( j¼ 1, . . . , 20) for the completely affine models
in Figures 4c–f. The essentially affine models have Q̂Qð jÞ statistics that are similar to that of their
completely affine counterparts.
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models, A2 (3) and E2 (3) have the best overall performance with their

Q̂Qð1Þ statistics around 30, and A3 (3) performs worse, with its Q̂Qð1Þ
statistics around 70. The models A1 (3) and E1 (3) have much worse

performance with their Q̂Qð1Þ statistics close to 140, while A0 (3) and E0

(3) have the worst performance with most of their Q̂Qð jÞ statistics over 100.

Table 3
Parameter estimates for multivariate affine term structure models completely affine models (l2¼ 0)

A0 (3) A1 (3) A2 (3) A3 (3)

Est. SE Est. SE Est. SE Est. SE

a1 1.0 0.0 0.0 0.0
a2 1.0 1.0 0.0 0.0
a3 1.0 1.0 1.0 0.0
d0 0.046 (0.015) 0.022 (0.012) 0.015 (0.0013) �0.0052 (0.0086)
d1 0.0 (0.0) 0.00092 (0.00059) 0.00080 (0.00046) 0.0014 (0.00018)
d2 0.010 (0.002) 0.000093 (0.00018) 0.0014 (0.00015) 0.00056 (0.00064)
d3 0.00044 (0.00069) 0.0035 (0.00089) 0.0029 (0.00097) 0.0088 (0.0013)
(Ku)1 0.0 0.16 (0.052) 0.0 (0.0) 0.83 (0.067)
(Ku)2 0.0 �0.52 0.25 (0.37) 0.0 (0.0)
(Ku)3 0.0 0.27 �3.22 0.34 (0.012)
k11 �0.56 (0.14) �0.030 (0.019) �0.14 (0.098) �0.55 (0.18)
k12 0.0 0.0 0.31 (0.097) 0.072 (0.078)
k13 0.0 0.0 0.0 0.0 (0.0)
k21 1.67 (0.15) 0.095 (0.0039) 0.17 (0.124) 0.0 (0.0)
k22 �1.64 (0.58) �0.32 (0.056) �0.48 (0.217) �0.041 (0.029)
k23 0.0 �17.66 (0.035) 0.0 0.12 (0.020)
k31 0.13 (0.087) �0.050 (0.036) �0.87 (0.35) 1.84 (0.14)
k32 �0.18 (0.0) 0.018 (0.051) 3.38 (0.80) 0.0 (0.0)
k33 �0.0035 (0.17) �1.86 (0.041) �1.73 (0.12) �2.02 (0.20)
b11 0.0 1.0 1.0 1.0
b12 0.0 0.0 0.0 0.0
b13 0.0 0.0 0.0 0.0
b21 0.0 42.09 (0.062) 0.0 0.0
b22 0.0 0.0 1.0 1.0
b23 0.0 0.0 0.0 0.0
b31 0.0 0.32 (0.028) 0.0 (0.0) 0.0
b32 0.0 0.0 4.33 (0.071) 0.0
b33 0.0 0.0 0.0 1.0
l11 �0.036 (0.00059) �0.040 (0.024) �0.029 (0.020) �0.049 (0.016)
l12 �0.59 (0.0026) �0.017 (0.011) �0.054 (0.029) �0.030 (0.0086)
l13 �0.16 (0.00049) �0.11 (0.0030) �0.11 (0.053) �0.32 (0.020)
Likelihood 10.52 9.81 7.96 7.81

This table reports the quasi-maximum likelihood estimates for three-factor completely affine models using
monthly 6-month, 2- and 10-year zero coupon yields from January 1952 to December 1998. All models
share the following specifications for the instantaneous interest rate, the physical dynamics of state
variables and the market price of risk:

Rt ¼ d0 þ d1X1t þ d2X2t þ d3X3t,

d

X1t

X2t

X3t

0B@
1CA ¼

ðKuÞ1
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0B@
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375dtþ Std
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0B@
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StðiiÞ ¼
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Table 4
Parameter estimates for multivariate affine term structure models essentially affine models

E0 (3) E1 (3) E2 (3)

Est. SE Est. SE Est. SE

a1 1.0 0.0 0.0
a2 1.0 1.0 0.0
a3 1.0 1.0 1.0
d0 0.017 (0.00066) 0.023 (0.0041) 0.015 (0.0048)
d1 0.032 (0.0041) 0.0014 (0.00018) 0.00083 (0.00027)
d2 0.013 (0.0012) 0.000066 (0.00063) 0.0013 (0.0)
d3 0.02 (0.0098) 0.0035 (0.0018) 0.0024 (0.00043)
(Ku)1 0.0 0.16 (0.039) 0.0 0.0
(Ku)2 0.0 �0.52 0.25 (0.13)
(Ku)3 0.0 0.27 �3.22
k11 �2.69 (0.0168) �0.030 (0.073) �0.14 (0.032)
k12 0.0 0.0 0.31 (0.033)
k13 0.0 0.0 0.0
k21 0.12 (0.0011) 0.095 (0.0069) 0.16 (0.045)
k22 �0.13 (0.0057) �0.32 (0.13) �0.48 (0.072)
k23 0.0 �17.66 (0.070) 0.0
k31 �0.43 (0.0046) �0.050 (0.0057) �0.87 (0.33)
k32 �0.22 (0.052) 0.018 (0.097) 3.38 (0.25)
k33 �0.17 (0.056) �1.86 (0.091) �1.73 (0.57)
b11 0.0 1.0 1.0
b12 0.0 0.0 0.0
b13 0.0 0.0 0.0
b21 0.0 42.09 (0.30) 0.0
b22 0.0 0.0 1.0
b23 0.0 0.0 0.0
b31 0.0 0.32 (0.29) 0.0 (0.0)
b32 0.0 0.0 4.32 (0.14)
b33 0.0 0.0 0.0
l11 �0.32 (0.00055) �0.040 (0.12) �0.029 (0.0028)
l12 �0.86 (0.0020) �0.017 (0.075) �0.054 (0.010)
l13 �0.40 (0.0018) �0.11 (0.020) 0.62 (0.17)
l2(11) �0.56 (0.23) 0.0 0.0
l2(12) �0.46 (1.96) 0.0 0.0
l2(13) 0.075 (0.053) 0.0 0.0
l2(21) 0.20 (0.35) 3.49 (0.11) 0.0
l2(22) �5.37 (1.84) �0.10 (0.037) 0.0
l2(23) �0.19 (0.16) 5.85 (0.022) 0.0
l2(31) �0.57 (0.19) �0.064 (0.0069) 0.068 (0.036)
l2(32) 1.92 (1.06) 0.015 (0.078) 2.15 (0.12)
l2(33) �0.19 (0.081) �1.68 (0.081) 0.12 (0.041)
Likelihood 13.03 10.68 8.28

This table reports the quasi-maximum likelihood estimates for three-factor essentially affine models using
monthly 6-month, 2- and 10-year zero coupon yields from January 1952 to December 1998. All models
share the following specifications for the instantaneous interest rate, the physical dynamics of state
variables and the market price of risk:

Rt ¼ d0 þ d1X1t þ d2X2t þ d3X3t,

d
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Except for E2 (3), the other two essentially affine models do not

outperform their completely affine counterparts.

Our findings are consistent with the well-known trade-off between the

flexibility in modeling the conditional variances of Xt on one hand, and

the conditional correlations between the components of Xt and excess
bond returns on the other hand. Both A0 (3) and E0 (3) have greater

flexibility in modeling the conditional correlation of Xt and excess bond

returns,23 but they assume constant conditional variance for Xt. On the

other hand, A3 (3), although allowing each state variable to follow a

square root process, imposes strong restrictions on the correlations

between the components of Xt and the market prices of risk.24 Dai and

Singleton (2000) conjecture that the models that are able to accommodate

both time-varying volatilities of state variables and their time-varying
correlations, such as A1 (3) and A2 (3), are more likely to perform better.

While Dai and Singleton (2000) show that A1 (3) outperforms A2 (3) in

modeling the weekly U.S. swap rates during the past 15 years, we find that

A2 (3) and E2 (3) perform best for monthly U.S. Treasury yields over the

past 50 years. This difference is most likely due to the use of different data

and sample periods. Our data covers a much longer period and includes

late 1970s and early 1980s—a period with extremely high and persistent

volatilities. Thus, modeling time-varying volatility might be more impor-
tant for Treasury yields than swap rates. Our finding confirms Dai and

Singleton’s (2003) conjecture that ‘‘for other market of different sample

periods, where conditional volatility is more pronounced in the data, the

relative goodness-of-fit of models in the branches A1 (3) and A2 (3) may

change.’’ While Dai and Singleton (2000) only consider the completely

affine modelsA1 (3) andA2 (3), we find thatA3 (3) outperformsA1 (3), and

E2 (3) outperforms all the completely affine models for Treasury yields.

Figures 4d–f report the Q̂Qð jÞ statistics for 6-month, 2-, and 10-year
yields, respectively. Consistent with their ranking in overall performance,

A2 (3), E2 (3), and A3 (3) perform well in modeling each individual yield.

One interesting finding that is not obvious from the overall performance

evaluation is that the above three models capture the 2- and 10-year yields

much better than the 6-month yields: most Q̂Qð jÞ statistics for E2 (3) for the

2-year yields are not significant at the 5% level. Models A1 (3) and E1 (3)

have similar performance to the above three models for the 6-month

and 10-year yields, but they perform extremely poorly for the 2-year

23 Gaussian models allow correlations of all the state variables with different signs and market prices of risk
to depend on all the state variables in their essentially affine form.

24 In the A3 (3) model, the conditional correlations among the components of Xt are equal to zero and the
unconditional correlations among the components of Xt must be positive. In addition, the market prices
of risk can only depend on the volatility of each risk factor and there is no corresponding essential affine
version for this model.
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yield. Models A0 (3) and E0 (3) have the worst performance for all

individual yields.

We further investigate the reasons for the failure of affine models by

separately examining the U[0, 1] and i.i.d. properties of the generalized

residuals of each individual yield. Figure 5 displays the kernel marginal
density estimates of the combined generalized residuals in (30) and the

individual residuals in Equation (29) for 6-month, 2- and 10-year

yields, for models A0 (3), A1 (3), and A2 (3).25 Consistent with the

Q̂Qð jÞ statistics, we find that A2 (3) captures the marginal distributions

of the 2- and 10-year yields very well: the marginal density estimates of

the generalized residuals for these two yields are very close to U[0, 1].

However, A2 (3) fails to adequately capture the distribution of the

6-month yield: its marginal density exhibits a pronounced peak in the
middle, suggesting that the model cannot adequately capture the center

of the distribution of the 6-month yield. Both A0 (3) and A1 (3) capture

the marginal distribution of all three yields very poorly: there are

pronounced peaks at both ends of the distribution, suggesting that

there are too many observations in the tails than predicted by the

model. This indicates the failure of these two models in capturing the

heavy tails (or large movements) of all three yields.

We also calculate M(m, l ) statistics in Equation (12) to examine the
aspects of the dynamics of the generalized residuals that an affine model

fails to capture. The M(m, l ) statistics reported in Table 5 show that all

models fail to capture dependence in the conditional variance and kurtosis

of the generalized residuals for all three yields. Both M(2, 2) and M(4, 4)

are overwhelmingly significant for all yields under all affine models,

although they become smaller for non-Gaussian models. All affine models

have some difficulties in modeling the conditional mean [M(1, 1)] and

skewness [M(3, 3)] of their generalized residuals, especially for the
6-month and 10-year yields. Nevertheless, all affine models seem to be

able to adequately capture ARCH-in-Mean effects [M(1, 2)] and

‘‘leverage’’ effects [M(2, 1)] for all yields, except for some rare cases

involving the 6-month and 2-year yields. All affine models fail to satisfac-

torily capture the dependence in conditional mean, variance, skewness,

and kurtosis of the generalized residuals for the 6-month yield. Except for

M(2, 2) and M(4, 4), models A2 (3), E2 (3), and A3 (3) provide fairly good

description of the 2-year yield.
In summary, we find that some affine models [e.g., A2 (3) and E2 (3)] do

a reasonably good job in modeling the 2- and 10-year yields, although they

fail to adequately capture the conditional variance and kurtosis of

the generalized residuals of these yields. However, these models fail to

25 The marginal densities of A3 (3) and E2 (3) are very similar to that of A2 (3), while the marginal densities
of E0 (3) and E1 (3) are similar to those of A0 (3) and A1 (3), respectively.
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Figure 5
The nonparametric marginal density of the generalized residuals of combined, 6-month, 2- and 10-year yields
under affine term structure models
Figures 5a–d plot the kernel density estimators of the combined and three individual generalized
residuals, respectively for three completely affine models A0 (3), A1 (3), and A2 (3), respectively.
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satisfactorily capture the short end of the yield curve: they have difficulties

in modeling the marginal distribution and the dynamics of the generalized

residuals of the 6-month yield.

5. Conclusion

Nonparametric methods have enjoyed enormous success in many areas of
econometrics and statistics. In the recent finance literature, there are some

concerns that nonparametric approach, despite its many appealing fea-

tures, might not be suitable for financial data, which are typically highly

persistently dependent and thus render poor finite sample performance of

nonparametric methods.

In this article, we have developed an omnibus nonparametric specifica-

tion test that has good finite sample performance, and can be applied to

a wide range of continuous-time and discrete-time, univariate and
multivariate dynamic economic models. A class of separate inference

procedures are supplemented to gauge possible sources of model mis-

specification. To highlight our approach, we have applied our tests to

evaluate a variety of popular univariate spot rate diffusion models and

multivariate affine term structure models, obtaining many interesting new

Table 5
Separate inference statistics for affine models

Model Maturity M (1,1) M (1,2) M (2,1) M (2,2) M (3,3) M (4,4)

A0 (3) 6 month 15.45 5.27 0.30 93.47 13.03 105.96
2 year 0.015 �0.22 �0.25 44.34 0.045 47.90
10 year 1.14 0.51 �0.57 20.92 1.02 21.12

A1 (3) 6 month 10.92 2.40 3.52 43.77 9.78 53.60
2 year 4.28 2.76 �1.37 5.24 2.20 6.04
10 year 1.95 0.088 �0.49 23.07 2.54 19.73

A2 (3) 6 month 14.34 0.49 2.77 67.83 10.80 69.01
2 year 0.67 1.31 1.19 8.76 �0.13 8.63
10 year 10.35 1.23 �1.12 22.19 13.49 18.63

A3 (3) 6 month 18.74 0.73 1.91 78.46 13.03 80.49
2 year 0.11 1.01 1.04 12.65 �0.81 12.50
10 year �0.51 1.14 2.13 19.43 �0.55 20.77

E0 (3) 6 month 17.98 �0.25 21.71 206.54 16.69 239.44
2 year 0.64 0.77 0.73 36.72 2.02 58.41
10 year 0.17 �0.22 2.13 48.31 3.32 69.82

E1 (3) 6 month 9.48 2.26 1.63 41.43 8.91 55.13
2 year 3.32 1.65 �1.54 7.09 1.82 7.98
10 year 1.46 0.37 �0.79 38.23 2.02 35.35

E2 (3) 6 month 15.58 2.42 2.83 51.35 12.80 48.51
2 year 0.32 0.99 0.22 7.20 �0.36 7.38
10 year 9.85 1.20 �1.01 21.62 13.35 19.33

This table reports the separate inference statisticsM(m, l) in (12) for the seven three-factor completely and
essentially affine models. The asymptotically statistic M(m, l) can be used to test whether the cross-
correlation between the m-th and l-th moments of {ZtD} is significantly different from zero. The choice of
(m, l)¼ (1, 1), (2, 2), (3, 3), and (4, 4) is very sensitive to autocorrelations in mean, variance, skewness, and
kurtosis of (XtD}, respectively. We only show results for lag truncation order p¼ 20; the results for p¼ 10
and 30 are similar.
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empirical findings. Our study shows that contrary to the general

perception in the literature, nonparametric methods can be a reliable

and powerful tool for analyzing financial data.

Appendix

To illustrate the essence of our proof, we present a detailed proof for the case that Xt is a

Markovian process. The case that Xt is non-Markovian can be proved similarly, but with

more tedious algebra. Throughout, we use C to denote a generic bounded constant, j�j to
denote the usual Euclidean norm, and q

quZtðu0Þ to denote q
quZtðuÞju¼u0

. All convergencies are

taken as n ! 1. We now provide regularity conditions.

Assumption 1. Let (V,F ,P) be a complete probability space. (1) Xt�Xt(v), where v 2 V and

t 2 [0,T] � R
þ, is a continuous-time process with transition density p0(x, t j y, s), where s< t;

(2) a discrete sample fXtDgnt¼1 of Xt is observed, whereD is a fixed sample interval, and {Xt D} is

an a-mixing process with mixing coefficient a(�) satisfying
P1

t¼0 aðtDÞ
ðn�1Þ=n �C for some

constant n> 1.

Assumption 2. Let Q be a finite-dimensional parameter space. (1) The model transition density

p(x, t j y, s, u) for the underlying process Xt is a measurable function of (x, y) for each u 2 Q; (2)

p(x, t j y, s, u) is twice-continuously differentiable with respect to u in a neighborhood Q0 of u0,

with limn!1
Pn

t¼1 Ej q
quZtðu0Þj4 �C and limn!1

Pn
t¼1 E sup u2Q0

j q2

ququ0 Ztðu0Þj2 �C, where

Zt(u) is defined in (5).

Assumption 3. (1) The function Gt�1ðzÞ�Ef½ qquZtðuÞ�u¼u0
jZtðu0Þ ¼ z,Xðt�1ÞDg is a measur-

able function of z and X(t�1)D; (2) with probability one, Gt�1(z) is continuously differentiable

with respect to z 2 [0, 1] for each t> 0, with limn!1
Pn

t¼1 EjG0
t�1½Ztðu0Þ�j2 �C.

Assumption 4. ûu 2 Q is a parameter estimator such that
ffiffiffi
n

p
ðûu� u	Þ ¼ OPð1Þ,where u	 � p lim ûu

is an interior element in Q and u	¼ u0 under H0.

Assumption 5. The kernel function k: [�1, 1]!R
þ is a symmetric, bounded, and twice con-

tinuously differentiable probability density such that
R 1

�1 kðuÞdu ¼ 1,
R 1

�1 ukðuÞdu ¼ 0, andR 1

�1 u
2kðuÞdu<1.

We first state the asymptotic distribution of the proposed test statistic under H0.

Theorem 1. Suppose that Assumptions 1–5 hold and h¼ cn�d for c 2 (0,1) and d 2 (0, 1
5
).

Then for any integer j> 0 such that j¼ o(n1�d (5�20v)) where n is as in Assumption 1, we have

Q̂QðjÞ!d Nð0, 1Þ under H0.

Theorem 2. Put Q̂Q� ½Q̂Qðj1Þ, . . . , Q̂QðjLÞ�0, where j1, . . . , jL are L distinct positive integers, and

L is a fixed integer. Then, under the same conditions of Theorem 1, Q̂Q! dNðO; IÞ under H0,

where I is a L�L identity matrix. Consequently, Q̂Qð jc1 Þ and Q̂Qð jc2 Þ are asymptotically inde-

pendent whenever jc1 6¼ jc2.

Next, we consider the asymptotic power of our tests under the alternative HA.

Assumption 6. For each integer j> 0, the joint density gj(x, y) of the transformed random vector

{Zt, Zt�j}, where Zt�Zt(u
	) and u	 is as in Assumption 4, exists and is continuously differ-

entiable on [0, 1]2.

Theorem 3. Suppose that Assumptions 1–6 hold and h¼ cn�d for c 2 (0,1) and d2 (0, 1
5
).

Then we have ðnhÞ�1
Q̂Qð jÞ!p V

�1=2
0

R 1

0

R 1

0 ½gjðz1, z2Þ� 1�2dz1dz2 HA for any integer j> 0

such that j¼ o(n1�d(5�2/v)) where n is as in Assumption 1. Consequently, for any sequence

of constants {Cn¼ oðnhÞ}, P½Q̂Qð jÞ>Cn�! 1 whenever Zt and Zt�j are not independent nor

U [0, 1].
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Proof of Theorem 1. Throughout, we put w� (z1, z2) 2 I
2, where I� [0, 1]2. Let ~ggjðwÞ be

defined in the same way as ĝgjðwÞ in (6) but with {Zt} replacing fẐZtg, and let ~QQð jÞ be defined
in the same way as Q̂QðjÞ in Equation (9) with ~ggjðzÞ replacing ĝgjðzÞ. We shall prove the

following theorems. &

Theorem A.1. Q̂Qð jÞ� ~QQðjÞ! p 0.

Theorem A.2. ~QQð jÞ!d Nð0, 1Þ.

Proof of Theorem A.1. Let ~MMð jÞ be defined as M̂Mð jÞ in Equation (8) with f~ggjðwÞg replacing

fĝgjðwÞg. We write

M̂Mð jÞ� ~MMð jÞ ¼
Z
I
2

½ĝgjðwÞ� ~ggjðwÞ�2dwþ 2

Z
I
2

½~ggðwÞ� 1�½ĝgðwÞ� ~ggðwÞ�dw

� D̂D1ð jÞ þ 2D̂D2ð jÞ: ðA1Þ

We shall show Proposition A.1 and A.2 below. Throughout, put nj� n� j. &

Proposition A.1. njhD̂D1ð jÞ!p 0.

Proposition A.2. njhD̂D2ð jÞ!p 0.

To show these propositions, we first state a useful lemma.

Lemma A.1. Let Kh (z1, z2) be defined in ð7Þ. Then for m¼ 0, 1, 2 and l� 1, we haveR 1

0 j qm

qmz2
Khðz1, z2Þjldz1 �Ch1�lðmþ1Þ for all z2 2 [0, 1] and

R 1

0 j qm

qmz2
Khðz1, z2Þjldz2 �Ch1�lðmþ1Þ

for all z1 2 [0, 1].

Proof of Lemma A.1. The results follow from change of variable and Assumption 5. &

Proof of Proposition A.1. Put kh(w,w
0)�Kh (z1, z

0
i) Kh (z2, z

0
2)� 1 and Wjt (u)� [Zt (u),

Zt�j (u)]. By a second order Taylor series expansion, we have

ĝgjðwÞ� ~ggjðwÞ ¼ ðûu� u0Þ0n�1
j

Xn
t¼jþ1

qkh½w,Wjtðu0Þ�
qu

þ 1

2
ðûu� u0Þ0n�1

j

Xn
t¼jþ1

q2kh½w,Wjtð�uuÞ�
ququ0

ðûu� u0Þ, ðA2Þ

where �uu lies between the segment of ûu and u0. It follows that

D̂D1ð jÞ� 2jûu�u0j2
Z
I
2

n�1
j

Xn
t¼jþ1

qkh½w,Wjtðu0Þ�
qu













2

dwþjûu�u0j4
Z
I
2





n�1
j

Xn
t¼jþ1

q2kh½w,Wjtð�uuÞ�
ququ0





2dw
� 2jûu�u0j2D̂D11ð jÞþ jûu�u0j4D̂D12: ðA3Þ

Put q
qu k̂khðwÞ� n�1

j

Pn
t¼jþ1

q
qu kh½w,Wjtðu0Þ�. Then

D̂D11ðjÞ� 2

Z
I
2





E qk̂khðwÞ
qu





2dwþ 2

Z
I
2





 qk̂khðwÞqu
�E

qk̂khðwÞ
qu





2dw � 2D̂D1nðjÞ þ 2D̂D2nðjÞ: ðA4Þ
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We now compute the order of magnitude for D̂D1nðjÞ. Using the identity that

qkh½w,WjtðuÞ�
qu

¼ qKh½z1,ZtðuÞ�
qu

Kh½z2,Zt�jðuÞ� þ Kh½z1,ZtðuÞ�
qKh½z2,Zt�jðuÞ�

qu
, ðA5Þ

the law of iterated expectations, and E{Kh[z1, Zt(u0)]jIt�1}¼ EKh [z1, Zt(u0)]¼ 1 under

H0, we have

E
qkh½w,Wjtðu0Þ�

qu

� �
¼ E E

qKh½z1,Ztðu0Þ�
qu





It�1

� �
Kh

�
z2,Zt�jðu0Þ

�� �
þ E

qKh½z2,Zt�jðu0Þ�
qu

� �
: ðA6Þ

Recall Gt�1ðzÞ�E
��

q
quZtðuÞ

�
u¼u0



Ztðu0Þ ¼ z, It�1

�
in Assumption 3. Because

qKh½z1,ZtðuÞ�
qu

¼ qKh½z1,ZtðuÞ�
qZtðuÞ

qZtðuÞ
qu

ðA7Þ

and q
qZtðu0ÞKh½z1,Ztðu0Þ� is a function of Zt(u0), which is independent of It�1 under H0,

we have

E
qKh½z1,Ztðu0Þ�

qu





It�1

� �
¼

Z 1

0

qKhðz1, zÞ�
qz

Gt�1ðzÞdz

¼ ½Gt�1ðzÞKhðz1, zÞ�z¼1
z¼0 �

Z 1

0

Khðz1, zÞG0
t�1ðzÞdz

¼ �G0
t�1ðz1Þ þ oð1Þ, ðA8Þ

where the first equality follows by iterated expectations and the i.i.d. U[0,1] property of {Zt

(u0)}, the second by integration by part, and the last by change of variable z¼ z1þ hu and

Assumption 3. For the last equality, we have used the fact that Gt�1(0)¼Gt�1(1)¼ 0 for all

integers t> 0. It follows from Equations (A6) and (A8) that

E
qkh½w;Wjtðu0Þ�

qu

� �
¼ �fE½Gt�1ðz1ÞKhðz2,Zt�jðu0Þ� þ E½Gt�j�1ðz2Þ�g½1þ oð1Þ�: ðA9Þ

Hence, for the first term in Equation (A4), by change of variable and Assumption 3, we have

D̂D1nð jÞ ¼
Z
I
2

n�1
j

Xn
t¼jþ1

E
qkh½w,Wjtðu0Þ�

qu













2

dw ¼ Oð1Þ: ðA10Þ

Next, we consider the second term D̂D2nð jÞ in Equation (A4). Given theMarkovian property

of the diffusion process Xt,
q
qu kh½w,Wjtðu0Þ�, as given in Equation (A5), is a measurable

function of at most {XtD, X(t�1)D, X(t�j)D, X(t�j�1)D} and thus is an a-mixing process with a-

mixing coefficient aj(lD)� 1 if l� jþ 1 and aj(lD)¼a [(l�j�1)D] if l> jþ 1 [cf. White (1984),

Proposition 6.1.8, p. 153]. By the Cauchy–Schwarz inequality and a standard a-mixing
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inequality [Hall and Heyde (1980), Corollary A.2, p. 278], we haveZ
I
2

E
qk̂khðwÞ
qu

�E
qk̂khðwÞ
qu





 



2dw
� 2n�1

j

Xn�1

l¼0

Xn
t¼lþ1

Z
I
2

cov
qkh½w,Wjtðu0Þ�

qu
,
qkh½w,Wjðt�lÞðu0Þ�

qu

� �
dw

� Cn�1
j

X1
l¼0

ajðlDÞ
n

n�1

" #
n�1
j

Xn
t¼lþ1

Z
I
2

E
qkh½w,Wjtðu0Þ�

qu





 



2n
( )1=n

dw

¼ Oðn�1
j jh�6þ2=nÞ, ðA11Þ

where we made use of the fact that
P1

l¼0 ajðlDÞ
n

n�1 �ð j þ 1Þ þ
P1

l¼0 aðlDÞ
n

n�1 �Cð j þ 1Þ
give Assumption 1, and the fact that by Jensen’s inequality, the Cr-inequality, (A5), (A7),

Lemma A.1, and Assumption 2, we have

n�1
j

Xn
t¼lþ1

Z
I
2

E
qkh½w,Wjtðu0Þ�

qu





 



2n
( )1=n

dw � 2CðnÞh�6þ2=n n�1
j

Xn
t¼jþ1

E
qZtðu0Þ

qu





 



2n
" #1=n

:

It follows from (A11) and Markov’s inequality that D̂D2nðjÞ ¼ OPðn�1
j jh�6þ2=nÞ. This,

Equations (A4), and (A10) imply

D̂D11ð jÞ ¼ OPð1þ n�1
j jh�6þ2=nÞ: ðA12Þ

Next, we consider the second term D̂D12 in Equation (A3). Noting that

q2kh½w,WjtðuÞ�
ququ0

¼ q2Kh½z1,ZtðuÞ�
ququ0

Kh½z2,Zt�jðuÞ�

þ Kh½z1,ZtðuÞ�
q2Kh½z2,Zt�jðuÞ�

ququ0

þ 2
qKh½z1,ZtðuÞ�

qu
qKh½z2,Zt�jðuÞ�

qu0
, ðA13Þ

we write

1

8
D̂D12ðjÞ �

Z
I
2

n�1
j

Xn
t¼jþ1

q2Kh½z1,ZtðuÞ�
ququ0

Kh½z2,Zt�jðuÞ�













2

dw

þ
Z
I
2

n�1
j

Xn
t¼jþ1

Kh½z1,ZtðuÞ�
q2Kh½z2,Zt�jðuÞ�

ququ0













2

dw

þ
Z
I
2

n�1
j

Xn
t¼jþ1

qKh½z1,ZtðuÞ�
qu

qKh½z2,Zt�jðuÞ�
qu0













2

dw

�D̂D3nð jÞþ D̂D4nð jÞþ D̂D5nð jÞ: ðA14Þ

For the first term in Equation (A14), by the Cauchy–Schwarz inequality, the identity that

q2Kh½z1,ZtðuÞ�
ququ0

¼ q2Kh½z1,ZtðuÞ�
q2ZtðuÞ

qZtðuÞ
qu

qZtðuÞ
qu0

þ qKh½z1,ZtðuÞ�
qZtðuÞ

q2ZtðuÞ
ququ0

, ðA15Þ

Lemma A.1, and Assumption 2, we have D̂D3nðjÞ ¼ OPðh�6Þ and D̂D4nðjÞ ¼ OPðh�6Þ. For
D̂D5nðjÞ in Equation (A14), we have D̂D5nðjÞ� fn�1

j

Pn
t¼1

R 1

0 j q
quKh½z1,ZtðuÞ�j2dz1g2 ¼ Oðh�6Þ
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by the Cauchy–Schwarz inequality, Equation (A7), Lemma A.1, and Assumption 2. It

follows from (A14) and ûu� u0 ¼ OPðn�1=2Þ that D̂D12ðjÞ ¼ OPðh�6Þ: This, (A3), (A12), and

Assumption 3 imply D̂D1ðjÞ ¼ OPðn�1
j þ n�2

j jh�6þ2=n þ n�2
j h�6Þ ¼ oPðn�1

j h�1Þ given h¼ ch�d

for d 2 (0, 1
5
) and j¼ o(n1�d (5�2/n)). The proof of Proposition A.1 is completed. &

Proof of Proposition A.2. Using Equation (A2), we have

D̂D2ð jÞ ¼ ðûu� u0Þ0
Z
I
2

½~ggjðwÞ� 1�n�1
j

Xn
t¼jþ1

qkh½w,Wjtðu0Þ�
qu

dw

þ 1

2
ðûu� u0Þ0

Z
I
2

½~ggjðwÞ� 1�n�1
j

Xn
t¼jþ1

q2kh½w,Wjtð�uuÞ�
ququ0

dwðûu� u0Þ

� ðûu� u0Þ0D̂D21ð jÞ þ
1

2
ðûu� u0Þ0D̂D22ð jÞðûu� u0Þ: ðA16Þ

We first consider D̂D21ðjÞ. Recall the definition of q
qu k̂kðwÞ as used in Equation (A4). We have

D̂D21ðjÞ ¼
Z
I
2

E
qk̂khðwÞ
qu

½~ggjðwÞ� 1�dwþ
Z
I
2

qk̂khðwÞ
qu

�E
qk̂khðwÞ
qu

� �
½~ggjðwÞ� 1�dw

� D̂D6nðjÞ þ D̂D7nðjÞ: ðA17Þ

We write D̂D6nðjÞ ¼ n�1
j

Pn
t¼jþ1 D6ntð jÞ, where D6ntðjÞ�

R
I
2 khðw,WjtÞE½ qqu khðw,WjtÞ�dw is a

j-dependent process with zero mean given Ekh[w,Wjt(u0)]¼ 0 underH0. Because E{kh [w,Wjt

(u0)] kh(w,Wjs(u0)]}¼ 0 unless t¼ s, s 
 j, we have EjD̂D6nðjÞj2 � 3n�1
j

Pn
t¼jþ1 EjD6ntðjÞj2 ¼

Oðn�1
j Þ by Equation (A9), change of variables and Assumption 3. Thus, we have

D̂D6nðjÞ ¼ OPðn�1=2
j Þ.

For the second term in Equation (A17), by the Cauchy–Schwarz inequality, Equation

(A11), Markov’s inequality, and supz2I2 j~ggjðwÞ� 1j ¼ OPðn�1=2
j h�1=lnðnjÞÞ as follows from a

standard uniform convergence argument for kernel density estimation with application of

Bernstein’s large deviation inequality, we have D̂D7nð jÞ ¼ OPðn�1
j j1=2h�4þ1=n=lnðnjÞÞ. It follows

from Equation (A17) that

D̂D21ð jÞ ¼ OPðn�1=2
j þ n�1

j j1=2h�4þ1=n=lnðnjÞÞ: ðA18Þ

Next, we consider the second term D̂D22ð jÞ in Equation (A16). Using Equation (A13),

we have

D̂D22ðjÞ ¼
Z
I
2

½~ggjðwÞ� 1� n�1
j

Xn
t¼jþ1

q2Kh½z1,Ztð�uuÞ�
ququ0

Kh½z2,Zt�jð�uuÞ�
( )

dw

þ
Z
I
2

½~ggjðwÞ� 1� n�1
j

Xn
t¼jþ1

Kh½z1,Ztð�uuÞ�
q2Kh½z2,Zt�jð�uuÞ�

ququ0

( )
dw

þ 2

Z
I
2

½~ggjðwÞ� 1� n�1
j

Xn
t¼jþ1

qKh½z1,Ztð�uuÞ�
qu

qKh½z2,Zt�jð�uuÞ�
qu0

( )
dw

� D̂D8nð jÞ þ D̂D9nð jÞ þ 2D̂D10nð jÞ: ðA19Þ

For the first term in Equation (A19), using Equation (A15), Lemma A.1, and Assumption 2,

we have


D̂D8nð jÞ



� sup

w2I2
j~ggjðwÞ� 1jn�1

j

Xn
t¼jþ1

Z 1

0

q2Kh½z1,Ztð�uuÞ�
ququ0





 



dz1 Z 1

0

Kh½z2,Zt�jð�uuÞ�dz2

¼ OPðn�1=2
j h�3=lnðnjÞÞ:
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Similarly, we can show D̂D9nð jÞ ¼ OPðn�1=2
j h�3=lnðnjÞÞ. We also have D̂D10nð jÞ ¼

OPðn�1=2
j h�3=lnðnjÞÞ by Equation (A7), Lemma A.1, and Assumption A.2. It follows

from Equation (A19) that D̂D22ðjÞ ¼ OPðn�1=2
j h�3=lnðnjÞÞ. This, Equations (A16), (A18),

Assumption 4, and the conditions on h and j imply D̂D2ð jÞ ¼ oPðn�1
j h�1Þ. &

Proof of Theorem A.2. In the proof of Theorem A.2, we setWjt� (Zt, Zt�j) and Zt�Zt(u0).

Recalling ~ggjðwÞ� 1 ¼ n�1
j

Pn
t¼jþ1 kðw;WjtÞ, we write

nj eMMðjÞ ¼ n�1
j

Xn
t¼jþ1

Z
I
2

k2hðw,WjtÞdwþ 2n�1
j

Xn
t¼jþ2

Xt�1

s¼jþ1

Z
I
2

khðw,WjtÞkhðw,WjtÞdw

� ~AAnðjÞ þ ~BBnðjÞ: ðA20Þ
We shall show Propositions A.3 and A.4 below. &

Proposition A.3. h~AAnð jÞ� hA0
h ¼ OPðn�1=2

j h�3=2Þ, where A0
h is as in Equation ð10Þ.

Proposition A.4. h~BBnð jÞ!d Nð0,V0Þ, where V0 is as in Equation ð11Þ.

We first state a useful lemma.

Lemma A.2. Put ah(z1, z2)�Kh(z1, z2)� 1 and bhðz1, z2Þ�
R 1

0 ahðz, z1Þahðz, z2Þdz. Then

for any h� h(n) 2 (0, 1) and any integer n> 0, we have: ð1Þ
R 1

0 ahðz, z1Þdz1 ¼ 0

and
R 1

0 jahðz1, zÞjdz1 �C for all z 2 [0, 1]; (2)
R 1

0

R 1

0 a2hðz1, z2Þdw ¼ ðh�1 � 2Þ
R 1

�1 k
2ðuÞdu þ

2
R 1

0

R 1

�b
k2bðuÞdudb� 1; (3)

R 1

0

R 1

0 a4hðz1, z2Þdw ¼ Oðh�3Þ; (4)
R 1

0 bhðz1, zÞdz1 ¼
R 1

0 bhðz, z1Þdz1 ¼
0 for all z 2 [0, 1]; ð5Þ

R 1

0

R 1

0 b
2
hðz1,z2Þdw¼ h�1V

1=2
0 ½1þoð1Þ�;ð6Þ

R 1

0

R 1

0 b
4
hðz1,z2Þdw¼ Oðh�3Þ.

Proof of Lemma A.2. The results follow by change of variable, Equation (7), and

Assumption 5. &

Proof of Proposition A.3. By the definition of kh(w, w
0) and ah(z1, z2), we can write

khðw,WjtÞ ¼ ahðz1,ZtÞanðz2,Zt�jÞ þ ahðz1,ZtÞ þ ahðz2,Zt�jÞ: ðA22Þ
Hence, by the Cauchy–Schwarz inequality, Lemma A.2 (6), and H0, we have

E½
R 1

0

R 1

0 k2hðw,WjtÞdz�2 ¼ Oðh�6Þ for j> 0. Moreover, observing that Wjt is a j-dependent

process such that Wjt and Wjs are independent unless t¼ s, s 
 j, and using Chebyshev’s

inequality, we have ~AAnðjÞ�E ~AAnðjÞ ¼ OPðn�1=2
j h�3Þ.

It remains to show E ~AAnðjÞ ¼ A0
h. Using the fact that Zt and Zt�j are independent for j> 0,

the law of iterated expectations, and Lemmas A.2(1, 2), we have for j> 0, E ~AAnðjÞ ¼
½
R 1

0 Ea2hðz,Z1Þdz�2 þ 2
R 1

0 Ea2hðz,Z1Þdz ¼ A0
h. &

Proof of Proposition A.4. Using (A22) and the definition of bh(z1, z2), we obtain

njeBBnð jÞ ¼ 2n�1
j

Xn
t¼jþ 2

Xt�1

s¼jþ1

bhðZt ,ZsÞbnðZt�j ,Zs�jÞ

þ 2n�1
j

Xn
t¼jþ2

Xt�1

s¼jþ1

½bhðZt,ZsÞ þ bhðZt�j ,Zs�jÞ

þ bhðZt ,ZsÞ
Z 1

0

ahðz2,Zt�jÞdz2 þ bhðZt ,ZsÞ
Z 1

0

ahðz2,Zs�jÞdz2

þ bhðZt�j ,Zs�jÞ
Z 1

0

ahðz1,ZtÞdz1 þ bnðZt�j ,Zs�jÞ
Z 1

0

ahðz1,ZsÞdz1

þ
Z 1

0

ahðz1,ZtÞdz1
Z 1

0

ahðz2,Zs�jÞdz2 þ
Z 1

0

ahðz1,ZsÞdz1
Z 1

0

ahðz2,Zt�jÞdz2�

� ~UUnðjÞ þ 2
X8
c¼1

~BBcnðjÞ: &
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Lemma A.3. njh~BBnð jÞ ¼ njh ~UUnðjÞ þ oPð1Þ.

Proof of Lemma A.3. We shall show njh~BBcnð jÞ!p 0 for c¼ 1, . . . , 8. First, we consider

c¼ 1. By Lemma A.2(4) and H0, ~BB1nðjÞ is a degenerate U-statistic because E[bh(Zt, Zs)jZs] ¼
E [bh(Zt,Zs)jZt]¼ 0. Hence, we have E½nj ~BB1nðjÞ�2 ¼ n�2

j

Pn
t¼jþ2

Pt�1
s¼jþ1 Eb

2
hðZt ,ZsÞ ¼Oðh�1Þ,

where the last equality follows from LemmaA.2(5). Therefore, njh~BB1nð jÞ ¼ OPðh1=2Þ ¼ oPð1Þ
given h ! 0. Similarly, we have njh~BB2nðjÞ ¼ oPð1Þ.
Next, we consider c¼ 3. Let F t be the sigma field consisting of {Zs, s � t}. Thus, by

Lemma A.2(2,4,5) and the law of iterated expectations (conditional on F t�1), we obtain

E~BB3nðjÞ ¼ 0, and E½nj ~BB3nðjÞ�2 ¼ Oðh�1Þ. Hence, we have njh~BB3nðjÞ ¼ OPðh1=2Þ ¼ oPð1Þ.
Similarly, njh~BBcnðjÞ!p0 for c¼ 4, 5, 6.

Finally, we consider c¼ 7 and 8. For c¼ 7, we write ~BB7nðjÞ ¼ n�1
j

Pn
t¼jþ2 B7ntð jÞ, where

B7ntðjÞ�
R 1

0 ahðz1,ZtÞdz1
Pt�1

s¼jþ1

R 1

0 ahðz2,Zs�jÞdz2. By Lemma A.2(1) and H0, we have

E½B7ntðjÞjF t�1� ¼ 0 and E½nj ~BB7ntðjÞ�2 �Cðt�jÞ:. It follows that E½nj ~BB7nðjÞ�2 �C and

njh~BB7nðjÞ ¼ oPð1Þ: For c¼ 8, we write

nj ~BB8nðjÞ ¼ n�1
j

Xn
t¼jþ2

Xt�1

s¼jþ1

½1ðs ¼ t� jÞ þ 1ðs 6¼ t� jÞ�
Z 1

0

ahðz1,ZsÞdz1

�
Z 1

0

ahðz2,Zt�jÞdz2,

where the first term (with 1(s¼ t� j)) is OP(1) by Markov’s inequality and Lemma A.2(1),

and the second term isOP(1) by using reasoning analogous to that for nj ~BB7nðjÞ. It follows that
njh~BB8nðjÞ ¼ OPðhÞ ¼ oPð1Þ.
We now show njh ~UUnð jÞ!d Nð0,V0Þ under H0. Note that ~UUnðjÞ is a U-statistic of a

j-dependent process {Wjt} where j is allowed to grow as n!1. We shall use Brown’s (1971)

martingale limit theorem. This approach has also been used in Hong and White (2005) to

derive the limit distribution of nonparametric entropy measures of serial dependence. We

first approximate ~UUnðjÞ by a simpler U-statistic. &

Lemma A.4. njh½ ~UUnðjÞ� ~UU	
n ð jÞ�!p 0, where ~UU	

n ð jÞ� n�1
j

Pn
t¼2jþ2

Pt�j�1
s¼jþ1 UnðWjt ,WjsÞ and

Un(Wjt, Wjs)� 2bh(Zt, Zt�j) bh(Zs, Zs�j).

Proof of Lemma A.4. Given the definitions of ~UUnð jÞ and ~UU	
n ð jÞ, we write

nj ~UUnðjÞ� nj ~UU
	
n ðjÞ ¼ n�1

j

Xn
t¼jþ2

Xt�1

s¼maxðjþ1;t�jÞ
UnðWjt ,WjsÞ� n�1

j

Xn
t¼jþ2

Rntð jÞ, ðA23Þ

where t� s � j in the first equality. Because E[Un(Wjt, Wjs)jF t�1]¼ 0 a.s. for t> s under H0

by Lemma A.1(1), {Rnt(j), F t�1} is an adapted martingale difference sequence (m.d.s.).

It follows that E½njÛUnð jÞ� nj ~UU
	
n ð jÞ� ¼ 0 and E½njÛUnð jÞ� nj ~UU

	
n ð jÞ�

2 ¼ n�2
j

Pn
t¼jþ2 ER

2
ntð jÞ,

where

ER2
ntðjÞ� 2E ½U2

n ðWjt ,Wjðt�jÞÞ� þ 2E

" Xt�1

s¼maxðj¼1;t�jþ1Þ
UnðWjt ,WjsÞ

#2

: ðA24Þ

The first term in Equation (A24) is the contribution from s¼ t� j and the second from

s> t� j. For the first term in Equation (A24), Wjt and Wj(t�j) are not independent, but

we have

EU2
n ðWjt ,Wjðt�jÞÞ� � 4Eb4hðZt ,ZsÞ ¼ Oðh�3Þ ðA25Þ
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by the Cauchy–Schwarz inequality and Lemma A.2(6). For the second term in Equation

(A24), Wjt and Wjs are independent given s> t� j. By Lemma A.2(4), we have

E[Un(w,Wjs)jF s�1]¼E[bn(z1, Zs)jF s�1]bh(z2,Zs�j)¼ 0 a.s. for all w 2 [0, 1]2. It follows by

the law of iterated expectations, H0 and Lemma A.2(5) that

E
Xt�1

s¼maxðjþ1;t�jþ1Þ
UnðWjt ,WjsÞ

24 352

¼ 4
Xt�1

s¼maxðjþ1;t�jþ1Þ
E½bhðZt ,ZsÞbhðZt�j ,Zs�jÞ�2 ¼ Oð jh�2Þ:

It follows from Equations (A23)–(A26) that E½njÛUnð jÞ� nj ~UUnð jÞ�2 ¼ Oðn�1
j h�3 þ n�1

j jh�2Þ.
Hence, njh½ ~UUnð jÞ� ~UU	

n ð jÞ� ¼ OPðn�1=2
j h�1=2 þ n

�1=2
j j1=2Þ ¼ oPð1Þ by Chebyshev’s inequality,

h¼ cn�d for d 2 (0, 1
5
) and j/nj ! 0.

We now consider the limit distribution of ~UU	
n ð jÞ. &

Lemma A.5. njh ~UU
	
n ðjÞ!d Nð0,V0Þ.

Proof of Lemma A.5. We write njh ~UU
	
n ðjÞ ¼ n�1

j

Pn
t¼jþ1 U

	
ntðjÞ, where U	

ntðjÞ�
h
Pt�j�1

s¼jþ1 UnðWjt ,WjsÞ ¼ 2h
Pt�j�1

s¼jþ1 bhðZt ,ZsÞbhðZt�j ,Zs�jÞ. Because fU	
ntðjÞ,F t�1g is an

adapted m.d.s. by H0 and Lemma A.2(4), we use Brown’s (1971) martingale theorem,

which states that V�1=2
n ðjÞnjh ~UU	

n ðjÞ!dNð0, 1Þ if

var�1½njh ~UU	
n ðjÞ�n�2

j

Xn
t¼2jþ2

EfU	
ntðjÞ

21½jU	
ntðjÞj> enjvar

1=2½njh ~UU	
n ðjÞ��g! 0 8e> 0, ðA27Þ

var�1½njh ~UU	
n ðjÞ�n�2

j

Xn
t¼2jþ2

E½U	
ntðjÞ

2jF t�1� !
p

0: ðA28Þ

We first show Vnð jÞ� var½njh ~UU	
n ð jÞ�!V0. Noting that Wjt and Wjs are independent for

s< t� j, we have E[Un(Wjt, Wjs1
) Un(Wjt, Wjs2

)jWjt] ¼ 0 for any s1, s2< t� j and s1 6¼ s2.

It follows by the law of iterated expectations and H0 that E½U	
ntðjÞ

2� ¼
h2

Pt�j�1
s¼jþ1 EU

2
n ðWjt ,WjsÞ ¼ 4ðt� 2j� 1Þh2½Eb2hðZ1,Z2Þ�2. Therefore, we have VnðjÞ ¼

n�2
j

Pn
t¼jþ2 E½U	

ntðjÞ
2�!V0 by Lemma A.2(4).

We now can verify condition Equation (A27) by showing n�4
j

Pn
t¼2jþ2 E½U	

ntðjÞ
4�! 0.

Because E[Un(w, Wjs)jF s�1]¼ 0 a.s. for all w 2 [0, 1]2 under H0, we have E½
Pn�j�1

s¼jþ1

Unðw,WjsÞ�4 � 4f
Pn�j�1

s¼jþ1 ½EU4
n ðw,WjsÞ�1=2g2. It follows that E½U	

ntðjÞ
4� � 4f

Pt�j�1
s¼jþ1

½EU4
n ðWjt ;WjsÞ�1=2g2 ¼ Oðt2h�6Þ by the law of iterated expectations and Minkowski’s

inequality, where for t> sþ j,

EU4
n ðWjt ,WjsÞ� 4½Eb4nðZt,ZsÞ�2 �Ch�6½1þ oð1Þ� ðA29Þ

by independence between Wjt and Wjs and Lemma A.2(6). Thus, n�4
j

Pn
t¼2jþ2 E½U	

ntðjÞ
4� ¼

Oðn�1
j h�2Þ! 0.

Next, we verify (A28) by showing Efn�2
j

Pn
t¼2jþ2 E½U	

ntðjÞ
2jF t�1� �E½U	

ntðjÞ
2�g2 ! 0. For

notational simplicity, we put Et(�)�E( � jF t). Then, we can write

Et�1½U	
ntðjÞ

2� ¼ h2
Xt�j�1

s¼jþ2

Et�1½U2
n ðWjt,WjsÞ� þ 2h2

Xt�j�1

s2¼jþ1

Xs2�1

s1¼jþ1

Et�1½UnðWjt,Wjs1 ÞUnðWjt ,Wjs2 Þ�

¼ h2
Xt�j�1

s¼jþ2

EU2
n ðWjt ,WjsÞ þ h2

X4
c¼1

Qcntð jÞ,
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where

Q1ntðjÞ� 2
Xt�j�1

s2¼jþ1

Xs2�1

s1¼jþ1

Et�1½UnðWjt ,Wjs1 ÞUnðWjt ,Wjs2 Þ�,

Q2ntðjÞ�
Xt�j�1

s¼jþ1

fEt�1½U2
n ðWjt ,WjsÞ�Et�1�j ½U2

n ðWjt,WjsÞ�g,

Q3ntðjÞ�
Xt�j�1

s¼jþ1

fEt�1�j ½U2
n ðWjt ,WjsÞ�Es�1½U2

n ðWjt ,WjsÞ�g,

Q4ntðjÞ�
Xt�j�1

s¼jþ1

fEs�1½U2
n ðWjt ,WjsÞ�E½U2

n ðWjt ,WjsÞ�g:

Thus, noting E½U	
ntðjÞ

2� ¼ h2
Pt�j�1

s¼jþ1 EU
2
n ðWjt ;WjsÞ, we obtain

E

�
n�2
j

Xn
t¼2jþ2

fEt�1½U	
ntðjÞ

2� �E½U	
ntðjÞ

2�g
�2

� 8n�4
j h4

X4
c¼1

E
Xn

t¼2jþ2

QcntðjÞ
" #2

: ðA30Þ

We first consider c¼ 1. Given Un(Wjt,Wjs)¼ 2bh(Zt,Zs)bh(Zt�j,Zs�j), we write

Q1ntðjÞ ¼ 2
Pt�j�1

s2¼jþ1

Ps2�1
s1¼jþ1 qhðZs1,Zs2 ÞbhðZt�j ,Zs1�jÞbhðZt�j ,Zs2�jÞ, where qh(z1, z2)�

E[bh(Z, z1) bh(Z, z2)]. By Lemma A.2(4), we have E[qh(Z, z)]¼E[qh(z, Z)]¼ 0 for all z 2 I.

Moreover, Zt�j is independent of (Wjs1
, Wjs2

) for t> s1� j, t> s2� j. Thus, conditional

on Zt�j, Q1nt(j) has a structure similar to that of njh½ ~UUnðjÞ� ~UU	
n ðjÞ� in Lemma A.3.

Following reasoning analogous to that for E½njh ~UUnð jÞ�njh ~UU
	
n ð jÞ�

2 in the proof of

Lemma A.3, we have

EQ2
1ntðjÞ¼EfE½Q2

1nt jZt�j �g�2
Xt�j�1

s2¼jþ2

Xs2�1

s1¼jþ1

EfEt�1½UnðWjt ,Wjs1 ÞUnðWjt,Wjs2 Þ�g
2

¼Oðth�6þt2h�2Þ,
where we made use of the facts that (1) for s2 ¼ s1 + j,Wjs1 andWjs2 are not independent, but

by the Cauchy–Schwarz inequality, Jensen’s inequality, and Equation (A29), we have

E{Et�1[Un(Wjt, Wjs1
)Un(Wjt, Wjs2

)]}2¼O(h�6); and (2) for s2 6¼ s1þ j, Wjs1
and Wjs2

are

independent, and so

EfEt�1½UnðWjt ,Wjs1 ÞUnðWjt ,Wjs2 Þ�g
2 ¼ fE½UnðWjt ,Wjs1 ÞUnðWjt ,Wjs2 Þ�g

2 ¼ Oðh�2Þ:

It follows by Minkowski’s inequality that

n�4
j h4E

" Xn
t¼jþ2

Q1ntðjÞ
#2

� n�4
j h4

Xn�j�1

s¼jþ1

½EQ2
1ntðjÞ�

1=2

( )2

¼ Oðn�1
j h�2 þ h2Þ: ðA31Þ

Next, we bound E½
Pn

t¼2jþ2 Q2ntðjÞ�2, the second term in Equation (A30). WritePn
t¼2jþ2 Q2ntðjÞ ¼

Pn�j�1
s¼jþ1

~QQ2nsðjÞ, where ~QQ2nsðjÞ�
Pn

t¼sþjþ1fEt�1½U2
n ðWjt ,WjsÞ��

Et�j�1½U2
n ðWjt;WjsÞ�g. Because the summand in ~QQ2nsðjÞ is an m.d.s. with respect to F t�j�1,

we have

E ~QQ2
2nsðjÞ¼

Xn
t¼sþjþ1

EfEt�1½U2
n ðWjt ,WjsÞ��Et�j�1½U2

n ðWjt ,WjsÞ�g2�Cðn�s� jÞh�6½1þoð1Þ�

by Jensen’s inequality and Equation (A29). It follows by Minkowski’s inequality that

n�4
j h4E

" Xn
t ¼ 2j þ 2

Q2ntðjÞ
#2

� n�4
j h4

( Xn�j�1

s¼jþ1

½E ~QQ2
2nsðjÞ�

1=2

)2

¼ Oðn�1
j h�2Þ: ðA32Þ
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Similarly, because the summand in Q3nt( j) is an m.d.s. with respect to F s�1, and the

summand in Q4nt( j) is an independent sequence with zero mean, we have EQ2
3nt�Cth�6

½1þ oð1Þ� and EQ2
4nt�Cth�6½1þ oð1Þ�. Hence, by Minkowski’s inequality, we have

n�4
j h4E

Xn
t¼jþ2

Qcntð jÞ
" #2

¼ Oðn�1
j h�2Þ, c ¼ 3, 4: ðA33Þ

It follows from Equations (A30)–(A33) that Efn�2
j

Pn
t¼2jþ2 E½U	

ntðjÞ
2jF t�1� �E½U	

ntðjÞ
2�g2 ¼

Oðn�1
j h�2 þ h2Þ. Thus, condition (A28) holds given h¼ cn�d for d 2 (0, 1

5
). Thus, we

have njh ~UU
	
n ðjÞ!d Nð0,V0Þ by Brown’s theorem. &

Proof of Theorem 2. We use the Cramer–Wold device (e.g., White 1984, Proposition 5.1,

p.108). Let l� (l1, . . . , lL)
0 be a L � 1 vector such that l0l¼ 1. Consider the statistic

Q̂Ql �
PL

c¼1 lcQ̂QðjcÞ. Following reasoning analogous to that for Theorem 1, it can be shown

that under H0 we have nhQ̂Ql ¼
PL

c¼1 lcV
�1=2
0 ½nh ~UU	

n ðjcÞ� hA0
h� þ oPð1Þ andPL

c¼1 lcV
�1=2
0 ½nh ~UU	

n ðjcÞ� hA0
h�!d Nð0;VlÞ, where the asymptotic variance

Vl � lim
n!1

var
XL
c¼1

lcV
�1=2
0 ½nh ~UU	

n ðjcÞ� hA0
h�

" #

¼ V�1
0 lim

n!1

XL
c¼1

l2cvar
�
nh ~UU	

n ðjcÞ
�
þ 2V�1

0 lim
XL�1

c2¼2

Xc2�1

c1¼1

lc1lc2 cov
�
nh ~UU	

n ðjc1 Þ, nh ~UU	
n ðjc2 Þ

�
¼

XL
c¼1

l2c ,

given var½nh ~UU	
n ðjcÞ�!V0 and cov½nhn ~UU	

n ðjc1 Þ, nh ~UU	
n ðjc2 Þ� ¼ 0 whenever jc1 6¼ jc2. It follows by

the Cramer–Wold device that Q̂QL � ½Q̂Qðj1Þ, . . . , Q̂QðjLÞ�0!dNð0, IÞ. &

Proof of Theorem 3. Put M1( j)�
R
I2[gj (w)� 1]2dw. Then

M̂MðjÞ�M1ðjÞ ¼
Z
I
2

½ĝgjðwÞ� gjðwÞ�2dwþ 2

Z
I
2

½ĝgjðwÞ� gjðwÞ�½gjðwÞ� 1�dw: ðA34Þ

We now show M̂MðjÞ�M1ðjÞ!p 0. Note that
R
I
2 ½ĝgjðwÞ� gjðwÞ�2dw� 2

R
I
2 ½ĝgjðwÞ�

~ggjðwÞ�2dwþ
R
I
2 ½~ggjðwÞ� gjðwÞ�2dw. For the first term, we have

R
I
2 ½ĝgjðwÞ� ~ggjðwÞ�2dw!p 0

following reasoning analogous to that of Theorem A.1. For the second term, using the

decomposition that ĝgjðwÞ� gjðwÞ ¼ ½ĝgjðwÞ�EĝgjðwÞ� þ ½EĝgjðwÞ� gjðwÞ�, the a-mixing condi-

tion in Assumption 1, change of variable, and a Taylor series expansion for the bias, we can

show
R
I
2 ½~ggjðwÞ� gjðwÞ�2dw ¼ OPðn�1

j h�2 þ h2Þ, where the O(h2) term is the squared bias

given Assumption 6. It follows that
R
I
2 ½ĝgjðwÞ� gjðwÞ�2dw!p 0 given h¼ cn�d for c 2 (0, 1)

and d 2 (0, 1
5
). We thus have M̂MðjÞ�M1ðjÞ!p 0 by the Cauchy–Schwarz inequality and

Equation (A34). Moreover, given ðnjhÞ�1
A0

h ¼ Oðn�1
j h�3Þ ¼ oð1Þ, we have

ðnjhÞ�1
Q̂QðjÞ ¼ V

�1=2
0 M1ðjÞ þ oPð1Þ. It follows that P½Q̂QðjÞ>Cn�!1 for any Cn = o(nh)

whenever M1(j)> 0, which holds when {Zt, Zt�j} are not independent or U[0, 1]. &
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